Development of a Human–Machine Mix for Forecasting Severe Convective Events

Author:

Karstens Christopher D.123,Correia James13,LaDue Daphne S.4,Wolfe Jonathan5,Meyer Tiffany C.12,Harrison David R.612,Cintineo John L.7,Calhoun Kristin M.12,Smith Travis M.12,Gerard Alan E.2,Rothfusz Lans P.2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

4. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

5. NOAA/NWS/WFO Duluth, Duluth, Minnesota

6. University of Oklahoma, Norman, Oklahoma

7. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract Providing advance warning for impending severe convective weather events (i.e., tornadoes, hail, wind) fundamentally requires an ability to predict and/or detect these hazards and subsequently communicate their potential threat in real time. The National Weather Service (NWS) provides advance warning for severe convective weather through the issuance of tornado and severe thunderstorm warnings, a system that has remained relatively unchanged for approximately the past 65 years. Forecasting a Continuum of Environmental Threats (FACETs) proposes a reinvention of this system, transitioning from a deterministic product-centric paradigm to one based on probabilistic hazard information (PHI) for hazardous weather events. Four years of iterative development and rapid prototyping in the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) with NWS forecasters and partners has yielded insights into this new paradigm by discovering efficient ways to generate, inform, and utilize a continuous flow of information through the development of a human–machine mix. Forecasters conditionally used automated object-based guidance within four levels of automation to issue deterministic products containing PHI. Forecasters accomplished this task in a timely manner while focusing on communication and conveying forecast confidence, elements considered necessary by emergency managers. Observed annual increases in the usage of first-guess probabilistic guidance by forecasters were related to improvements made to the prototyped software, guidance, and techniques. However, increasing usage of automation requires improvements in guidance, data integration, and data visualization to garner trust more effectively. Additional opportunities exist to address limitations in procedures for motion derivation and geospatial mapping of subjective probability.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3