Exploring the Usefulness of Machine Learning Severe Weather Guidance in the Warn-on-Forecast System: Results from the 2022 NOAA Hazardous Weather Testbed Spring Forecasting Experiment

Author:

Flora Montgomery L.12ORCID,Gallo Burkely13,Potvin Corey K.24,Clark Adam J.24,Wilson Katie12

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. c Storm Prediction Center, Norman, Oklahoma

4. d School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Artificial intelligence (AI) is gaining popularity for severe weather forecasting. Recently, the authors developed an AI system using machine learning (ML) to produce probabilistic guidance for severe weather hazards, including tornadoes, large hail, and severe winds, using the National Severe Storms Laboratory’s (NSSL) Warn-on-Forecast System (WoFS) as input. Known as WoFS-ML-Severe, it performed well in retrospective cases, but its operational usefulness had yet to be determined. To examine the potential usefulness of the ML guidance, we conducted a control and treatment (experimental) group experiment during the 2022 NOAA Hazardous Weather Testbed Spring Forecasting Experiment (HWT-SFE). The control group had full access to WoFS, while the experimental group had access to WoFS and ML products. Explainability graphics were also integrated into the WoFS web viewer. Both groups issued 1-h convective outlooks for each hazard. After issuing their forecasts, we surveyed participants on their confidence, the number of products viewed, and the usefulness of the ML guidance. We found the ML-based outlooks outperformed non-ML-based outlooks for multiple verification metrics for all three hazards and were rated subjectively higher by the participants. However, the difference in confidence between the two groups was not significant, and the experimental group self-reported viewing more products than the control group. Participants had mixed sentiments toward explainability products as it improved their understanding of the input/output relationships, but viewing them added to their workload. Although the experiment demonstrated the usefulness of ML guidance for severe weather forecasting, there are avenues to improve upon the ML guidance, and more training and exposure are needed to exploit its benefits fully. Significance Statement We developed an artificial intelligence (AI) system to predict tornadoes, large hail, and damaging straight-line winds. The AI system was leveraged in real time during the 2022 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. This study reveals that forecasters using AI guidance produced more reliable and spatially accurate outlooks than those without. While AI and complementary explainability products did not reduce forecaster workload, both demonstrated great potential for improving severe weather forecasting. This research also highlights the importance of user feedback in refining AI tools for severe weather forecasting.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Reference64 articles.

1. Abras, C., D. Maloney-Krichmar, and J. Preece, 2004: User-centered design. Encyclopedia of Human-Computer Interaction, W. Bainbridge, Ed., Sage Publications, 445–456.

2. Towards a user-centered design of a weather forecasting decision support tool;Argyle, E. M.,2017

3. Sensitivity of several performance measures to displacement error, bias, and event frequency;Baldwin, M. E.,2006

4. The role of domain expertise in trusting and following explainable AI decision support systems;Bayer, S.,2022

5. Bird, S., E. Klein, and E. Loper, 2009: Natural Language Processing with Python. O’Reilly Media Inc., 504 pp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3