Understanding Broadcast Meteorologists’ Current and Future Use of Severe Weather Watches, Warnings, and Probabilistic Hazard Information

Author:

Obermeier Holly B.12ORCID,Berry Kodi L.2,Trujillo-Falcón Joseph E.12

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Broadcast meteorologists are essential in the communication of National Weather Service (NWS) warnings to the public. Therefore, it is imperative to include them in a user-centered approach for the design and implementation of new warning products. Forecasting a Continuum of Environmental Threats (FACETs) will modernize the way meteorologists forecast and communicate NWS warning information to the general public using rapidly updating probabilistic hazard information (PHI). Storm-scale PHI consists of probabilistic forecasts for severe wind/hail, tornadoes, and lightning hazards. Hence, NWS warnings would have the capacity to be supplemented by a quantitative or qualitative likelihood of hazard occurrence. The researchers conducting this study wanted to know what broadcast meteorologists thought about the inclusion of this likelihood information and how it could impact their decision-making and communication process. Using a nationwide survey, this team of researchers first asked broadcast meteorologists about their current practices for severe weather coverage using NWS watches and warnings. Next, broadcast meteorologists were introduced to multiple iterations of PHI prototypes and queried for their input. Findings indicated that broadcast meteorologists already face a complex decision-making and communication process under today’s warning paradigm. In addition, respondents were split on whether to explicitly communicate probabilities with their viewers. Respondents’ choices were also somewhat inconclusive regarding nomenclature, definitions of PHI and representations of PHI with warning polygons. These results suggest that PHI should feature user-driven, customizable options to fulfill broadcast meteorologists’ needs and that the iterative nature of the research-and-development process of PHI should continue. Significance Statement Broadcast meteorologists are vital communicators of dangerous weather to the public, leading researchers to study them more closely. Using a nationwide survey, this team of researchers wanted to know how broadcast meteorologists talk about tornadoes, large hail, and high winds to their viewers under today’s system of National Weather Service warnings. Survey findings indicated that broadcast meteorologists face a complex decision-making process when communicating dangerous weather. Any effort to modernize the current warning system, such as including hazard probability, should consider this complex process. Modernization should complement the role of broadcast meteorologists to ultimately serve the public and user-driven options should be a key component of any probabilistic information that is included in a future National Weather Service warning system.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Reference48 articles.

1. AWARN, 2022: Advanced warning and response network. Accessed 27 April 2022, https://awarn.org.

2. Bitterman, A., M. Krocak, J. Ripberger, C. Silva, H. Jenkins-Smith, S. Ernst, and S. Stormer, 2022: Maintaining the series: Public reception, understanding, and responses to severe weather forecasts and warnings in the contiguous United States. Harvard Dataverse, accessed 1 August 2022, https://doi.org/10.7910/DVN/TD5DGD.

3. Using thematic analysis in psychology;Braun, V.,2006

4. The interpretation of IPCC probabilistic statements around the world;Budescu, D. V.,2014

5. Calhoun, K. M., and Coauthors, 2018: Cloud-to-ground lightning probabilities and warnings within an integrated warning team. Special Symp. on Impact-Based Decision Support Services, Austin, TX, Amer. Meteor. Soc., 4.4, https://ams.confex.com/ams/98Annual/webprogram/Paper329888.html.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3