Affiliation:
1. Applied Physics Laboratory, University of Washington, Seattle, Washington
Abstract
AbstractA new ship-based stereo video system is used to observe breaking ocean waves (i.e., whitecaps) as three-dimensional surfaces evolving in time. First, the stereo video measurements of all waves (breaking and nonbreaking) are shown to compare well with statistical parameters from traditional buoy measurements. Next, the breaking waves are detected based on the presence of whitecap foam, and the geometry of these waves is investigated. The stereo measurements show that the whitecaps are characterized by local extremes of surface slope, though the larger-scale, crest-to-trough steepness of these waves is unremarkable. Examination of 103 breaking wave profiles further demonstrates the pronounced increase in the local wave steepness near the breaking crest, as estimated using a Hilbert transform. These crests are found to closely resemble the sharp corner of the theoretical Stokes limiting wave. Results suggest that nonlinear wave group dynamics are a key mechanism for breaking, as the phase speed of the breaking waves is slower than predicted by the linear dispersion relation. The highly localized and transient steepness, along with the deviation from linear phase speed, explains the inability of conventional wave buoys to observe the detailed geometry of breaking waves.
Funder
National Science Foundation
Publisher
American Meteorological Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献