High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production

Author:

Mostert W.ORCID,Popinet S.ORCID,Deike L.ORCID

Abstract

We present high-resolution three-dimensional (3-D) direct numerical simulations of breaking waves solving for the two-phase Navier–Stokes equations. We investigate the role of the Reynolds number (Re, wave inertia relative to viscous effects) and Bond number (Bo, wave scale over the capillary length) on the energy, bubble and droplet statistics of strong plunging breakers. We explore the asymptotic regimes at high Re and Bo, and compare with laboratory breaking waves. Energetically, the breaking wave transitions from laminar to 3-D turbulent flow on a time scale that depends on the turbulent Re up to a limiting value $Re_\lambda \sim 100$ , consistent with the mixing transition in other canonical turbulent flows. We characterize the role of capillary effects on the impacting jet and ingested main cavity shape and subsequent fragmentation process, and extend the buoyant-energetic scaling from Deike et al. (J. Fluid Mech., vol. 801, 2016, pp. 91–129) to account for the cavity shape and its scale separation from the Hinze scale, $r_H$ . We confirm two regimes in the bubble size distribution, $N(r/r_H)\propto (r/r_H)^{-10/3}$ for $r>r_H$ , and $\propto (r/r_H)^{-3/2}$ for $r<r_H$ . Bubbles are resolved up to one order of magnitude below $r_H$ , and we observe a good collapse of the numerical data compared to laboratory breaking waves (Deane & Stokes, Nature, vol. 418 (6900), 2002, pp. 839–844). We resolve droplet statistics at high Bo in good agreement with recent experiments (Erinin et al., Geophys. Res. Lett., vol. 46 (14), 2019, pp. 8244–8251), with a distribution shape close to $N_d(r_d)\propto r_d^{-2}$ . The evolution of the droplet statistics appears controlled by the details of the impact process and subsequent splash-up. We discuss velocity distributions for the droplets, finding ejection velocities up to four times the phase speed of the wave, which are produced during the most intense splashing events of the breaking process.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference106 articles.

1. Role of all jet drops in mass transfer from bursting bubbles

2. Gentle spilling breakers: crest profile evolution

3. Hendrickson, K. & Yue, D.K.P. 2006 Navier–Stokes simulations of unsteady small-scale breaking waves at a coupled air–water interface. In 26th Symposium on Naval Hydrodynamics.

4. Air-Entrainment Mechanisms in Plunging Jets and Breaking Waves

5. Bursting bubble aerosols

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3