Statistical and Dynamical Characteristics of Extreme Wave Crests Assessed with Field Measurements from the North Sea

Author:

Malila Mika P.12ORCID,Barbariol Francesco3,Benetazzo Alvise3,Breivik Øyvind12,Magnusson Anne Karin1,Thomson Jim4,Ward Brian5

Affiliation:

1. a Norwegian Meteorological Institute, Bergen, Norway

2. b Geophysical Institute, University of Bergen, Bergen, Norway

3. c Institute of Marine Sciences (ISMAR)–National Research Council (CNR), Venice, Italy

4. d Applied Physics Laboratory, University of Washington, Seattle, Washington

5. e AirSea Laboratory, Centre for Ocean Research and Exploration, Ryan Institute, National University of Ireland, Galway, Ireland

Abstract

Abstract Wave crests of unexpected height and steepness pose a danger to activities at sea, and long-term field measurements provide important clues for understanding the environmental conditions that are conducive to their generation and behavior. We present a novel dataset of high-frequency laser altimeter measurements of the sea surface elevation gathered over a period of 18 years from 2003 to 2020 on an offshore platform in the central North Sea. Our analysis of crest height distributions in the dataset shows that mature, high sea states with high spectral steepness and narrow directional spreading exhibit crest height statistics that significantly deviate from standard second-order models. Conversely, crest heights in developing sea states with similarly high steepness but wide directional spread correspond well to second-order theory adjusted for broad frequency bandwidth. The long-term point time series measurements are complemented with space–time stereo video observations from the same location, collected during five separate storm events during the 2019/20 winter season. An examination of the crest dynamics of the space–time extreme wave crests in the stereo video dataset reveals that the crest speeds exhibit a slowdown localized around the moment of maximum crest elevation, in line with prevailing theory on nonlinear wave group dynamics. Extending on previously published observations focused on breaking crests, our results are consistent for both breaking and nonbreaking extreme crests. We show that wave crest steepness estimated from time series using the linear dispersion relation may overestimate the geometrically measured crest steepness by up to 25% if the crest speed slowdown is not taken into account. Significance Statement Better understanding of the statistics and dynamical behavior of extreme ocean surface wave crests is crucial for improving the safety of various operations at sea. Our study provides new, long-term field evidence of the combined effects of wave field steepness and directionality on the statistical distributions of crest heights in storm conditions. Moreover, we show that the dynamical characteristics of extreme wave crests are well described by recently identified nonlinear wave group dynamics. This finding has implications, for example, for wave force calculations and the treatment of wave breaking in numerical wave models.

Funder

Norges Forskningsråd

Publisher

American Meteorological Society

Subject

Oceanography

Reference100 articles.

1. The physics of anomalous (‘rogue’) ocean waves;Adcock, T. A. A.,2014

2. Adler, R. J., and J. E. Taylor, 2007: Random Fields and Geometry. Springer, 448 pp.

3. Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior;Banner, M.,2014

4. On a unified breaking onset threshold for gravity waves in deep and intermediate depth water;Barthelemy, X.,2018

5. Maxima for Gaussian seas;Baxevani, A.,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3