Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water

Author:

BABANIN ALEXANDER V.,CHALIKOV DMITRY,YOUNG I. R.,SAVELYEV IVAN

Abstract

The paper extends a pilot study into a detailed investigation of properties of breaking waves and processes responsible for breaking. Simulations of evolution of steep to very steep waves to the point of breaking are undertaken by means of the fully nonlinear Chalikov–Sheinin model. Particular attention is paid to evolution of nonlinear wave properties, such as steepness, skewness and asymmetry, in the physical, rather than Fourier space, and to their interplay leading to the onset of breaking. The role of superimposed wind is also investigated. The capacity of the wind to affect the breaking onset is minimal unless the wind forcing is very strong. Wind is, however, important as a source of energy for amplification of the wave steepness and ultimately altering the breaking statistics. A detailed laboratory study is subsequently described. The theoretical predictions are verified and quantified. In addition, some features of the nonlinear development not revealed by the model (i.e. reduction of the wave period which further promotes an increase in steepness prior to breaking) are investigated. Physical properties of the incipient breaker are measured and examined, as well as characteristics of waves both preceding and following the breaker. The experiments were performed both with and without a superimposed wind, the role of which is also investigated. Since these idealized two-dimensional results are ultimately intended for field applications, tentative comparisons with known field data are considered. Limitations which the modulational instability mechanism can encounter in real broadband three-dimensional environments are highlighted. Also, substantial examination of existing methods of breaking onset detection are discussed and inconsistencies of existing measurements of breaking rates are pointed out.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3