Subgrid Parameterizations of the Eddy–Eddy, Eddy–Mean Field, Eddy–Topographic, Mean Field–Mean Field, and Mean Field–Topographic Interactions in Atmospheric Models

Author:

Kitsios Vassili1,Frederiksen Jorgen S.2

Affiliation:

1. Oceans and Atmosphere, CSIRO, Hobart, Tasmania, Australia

2. Oceans and Atmosphere, CSIRO, Aspendale, Victoria, Australia

Abstract

Abstract Parameterizations are developed for each of the subgrid turbulence interaction classes in fully three-dimensional global atmospheric flows over topography, typical of January and July climate states. Stochastic and deterministic parameterizations are developed for the eddy–eddy interactions and deterministic parameterizations for eddy–mean field, eddy–topographic, mean field–mean field, and mean field–topographic interactions. All parameterizations are calculated from the statistics of higher-resolution reference direct numerical simulations (DNSs) truncated into resolved and subgrid scales and employed without tuning coefficients. This parameterization framework is validated by performing large-eddy simulations (LESs) that closely agree with the reference DNSs in terms of time-averaged kinetic energy spectra, zonal jet structure, and nonzonal streamfunction fields. Both the DNSs and LESs are formulated in such a way that the usual problem of a long artificial dissipation range does not occur. Successful LESs are produced with truncation wavenumbers 31 and 15, using, respectively, only 11.9% and 1.3% of the DNS computational effort at truncation wavenumber 63. The lower-resolution LESs show that the parameterizations are successful even when the energy injection due to baroclinic instability is not completely resolved. The contribution of each of the parameterized interaction classes to the quality of the LES is identified. The best agreement is achieved when all subgrid components are included. There is a very high level of agreement between the LESs and DNSs with typical streamfunction pattern correlations of r = 0.962 for the nonzonal components and r = 0.999 for the total fields when the complete sets of parameterizations are used.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3