Data‐Driven Stochastic Lie Transport Modeling of the 2D Euler Equations

Author:

Ephrati Sagy R.1ORCID,Cifani Paolo12,Luesink Erwin1,Geurts Bernard J.13

Affiliation:

1. Mathematics of Multiscale Modeling and Simulation Faculty EEMCS University of Twente Enschede The Netherlands

2. Gran Sasso Science Institute L’Aquila Italy

3. Multiscale Energy Physics CCER Faculty Applied Physics Eindhoven University of Technology Eindhoven The Netherlands

Abstract

AbstractIn this paper, we propose and assess several stochastic parametrizations for data‐driven modeling of the two‐dimensional Euler equations using coarse‐grid SPDEs. The framework of Stochastic Advection by Lie Transport (SALT) (Cotter et al., 2019, https://doi.org/10.1137/18m1167929) is employed to define a stochastic forcing that is decomposed in terms of a deterministic basis (empirical orthogonal functions, EOFs) multiplied by temporal traces, here regarded as stochastic processes. The EOFs are obtained from a fine‐grid data set and are defined in conjunction with corresponding deterministic time series. We construct stochastic processes that mimic properties of the measured time series. In particular, the processes are defined such that the underlying probability density functions (pdfs) or the estimated correlation time of the time series are retained. These stochastic models are compared to stochastic forcing based on Gaussian noise, which does not use any information of the time series. We perform uncertainty quantification tests and compare stochastic ensembles in terms of mean and spread. Reduced uncertainty is observed for the developed models. On short timescales, such as those used for data assimilation (Cotter et al., 2020a, https://doi.org/10.1007/s10955-020-02524-0), the stochastic models show a reduced ensemble mean error and a reduced spread. Particularly, using estimated pdfs yields stochastic ensembles which rarely fail to capture the reference solution on small time scales, whereas introducing correlation into the stochastic models improves the quality of the coarse‐grid predictions with respect to Gaussian noise.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3