Affiliation:
1. CSIRO Environment Aspendale VIC Australia
2. Laboratory for Turbulence Research in Aerospace and Combustion Department of Mechanical and Aerospace Engineering Monash University Clayton VIC Australia
3. CSIRO Environment Hobart TAS Australia
Abstract
AbstractThe ocean circulation dynamics can be represented as a high‐dimensional multi‐scale nonlinear system with inhomogenous meanfields and topography. Numerical simulations of the ocean dynamics resolve the large scales of motion on a computational grid, with the unresolved subgrid interactions parameterized. These simulations are highly dependent upon the grid resolution, unless the subgrid terms are appropriately parameterized. There are five fundamental classes of subgrid interactions: eddy‐eddy; eddy‐topographic; eddy‐meanfield; meanfield‐meanfield; and meanfield‐topographic. Scale dependent parameterizations representing each of these interaction classes are presented here in oceanic flows for the first time. Subgrid parameterizations are calculated and validated in baroclinic quasi‐geostrophic simulations of idealized Antarctic Circumpolar Current flows with representative mean currents and ocean floor topography. The parameterization coefficients are derived from the coarse grained statistics of high resolution reference simulations in spectral space. Stochastic and deterministic parameterizations are developed for the eddy‐eddy interactions, and deterministic forms for the remaining classes. The kinetic energy spectra and meanfield resulting from large eddy simulations (LES) adopting these coefficients accurately replicate those of the reference simulation. The eddy‐eddy interactions are dominant, but all classes need to be parameterized for best results. For LES where baroclinic instability is explicitly resolved the stochastic variants out‐perform the deterministic ones across all scales. When baroclinic instability is not explicitly resolved, the stochastic variants out‐perform the deterministic cases at the large scales, but introduce some distortions at the smallest resolved scales. This study provides an assessment of the relevant strengths of the subgrid interaction classes in an idealized yet representative ocean.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献