Statistical Dynamics and Subgrid Modelling of Turbulence: From Isotropic to Inhomogeneous

Author:

Frederiksen Jorgen S.1ORCID,Kitsios Vassili1ORCID,O’Kane Terence J.2ORCID

Affiliation:

1. CSIRO Environment, Aspendale, Melbourne 3195, Australia

2. CSIRO Environment, Hobart 7004, Australia

Abstract

Turbulence is the most important, ubiquitous, and difficult problem of classical physics. Feynman viewed it as essentially unsolved, without a rigorous mathematical basis to describe the statistical dynamics of this most complex of fluid motion. However, the paradigm shift came in 1959, with the formulation of the Eulerian direct interaction approximation (DIA) closure by Kraichnan. It was based on renormalized perturbation theory, like quantum electrodynamics, and is a bare vertex theory that is manifestly realizable. Here, we review some of the subsequent exciting achievements in closure theory and subgrid modelling. We also document in some detail the progress that has been made in extending statistical dynamical turbulence theory to the real world of interactions with mean flows, waves and inhomogeneities such as topography. This includes numerically efficient inhomogeneous closures, like the realizable quasi-diagonal direct interaction approximation (QDIA), and even more efficient Markovian Inhomogeneous Closures (MICs). Recent developments include the formulation and testing of an eddy-damped Markovian anisotropic closure (EDMAC) that is realizable in interactions with transient waves but is as efficient as the eddy-damped quasi-normal Markovian (EDQNM). As well, a similarly efficient closure, the realizable eddy-damped Markovian inhomogeneous closure (EDMIC) has been developed. Moreover, we present subgrid models that cater for the complex interactions that occur in geophysical flows. Recent progress includes the determination of complete sets of subgrid terms for skilful large-eddy simulations of baroclinic inhomogeneous turbulent atmospheric and oceanic flows interacting with Rossby waves and topography. The success of these inhomogeneous closures has also led to further applications in data assimilation and ensemble prediction and generalization to quantum fields.

Funder

CSIRO Environment

Publisher

MDPI AG

Reference192 articles.

1. On the theory of homogeneous isotropic turbulence;Millionshtchikov;Dokl. Acad. Nauk. SSSR,1941

2. A consequence of the zero fourth order cumulant approximation in the decay of isotropic turbulence;Ogura;J. Fluid Mech.,1963

3. Markovian inhomogeneous closures for Rossby waves and turbulence over topography;Frederiksen;J. Fluid Mech.,2019

4. Recent Developments in Theories of Inhomogeneous and Anisotropic Turbulence;Marston;Ann. Rev. Fluid Mech.,2023

5. The structure of isotropic turbulence at very high Reynolds numbers;Kraichnan;J. Fluid Mech.,1959

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3