Observation System Experiments with the Hourly Updating Rapid Refresh Model Using GSI Hybrid Ensemble–Variational Data Assimilation

Author:

James Eric P.1,Benjamin Stanley G.2

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/OAR/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

2. NOAA/OAR/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Abstract

A set of observation system experiments (OSEs) over three seasons using the hourly updated Rapid Refresh (RAP) numerical weather prediction (NWP) assimilation–forecast system identifies the importance of the various components of the North American observing system for 3–12-h RAP forecasts. Aircraft observations emerge as the strongest-impact observation type for wind, relative humidity (RH), and temperature forecasts, permitting a 15%–30% reduction in 6-h forecast error in the troposphere and lower stratosphere. Major positive impacts are also seen from rawinsondes, GOES satellite cloud observations, and surface observations, with lesser but still significant impacts from GPS precipitable water (PW) observations, satellite atmospheric motion vectors (AMVs), and radar reflectivity observations. A separate experiment revealed that the aircraft-related RH forecast improvement was augmented by 50% due specifically to the addition of aircraft moisture observations. Additionally, observations from en route aircraft and those from ascending or descending aircraft contribute approximately equally to the overall forecast skill, with the strongest impacts in the respective layers of the observations. Initial results from these OSEs supported implementation of an improved assimilation configuration of boundary layer pseudoinnovations from surface observations, as well as allowing the assimilation of satellite AMVs over land. The breadth of these experiments over the three seasons suggests that observation impact results are applicable to general forecasting skill, not just classes of phenomena during limited time periods.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. Observing-Systems Simulation Experiments: Past, Present, and Future

2. An Hourly Assimilation–Forecast Cycle: The RUC

3. The Value of Wind Profiler Data in U.S. Weather Forecasting

4. Benjamin, S. G., S. Weygandt, D. Devenyi, J. M. Brown, G. Manikin, T. L. Smith, and T. Smirnova, 2004c: Improved moisture and PBL initialization in the RUC using METAR data. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 17.3. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82023.htm.]

5. Relative Short-Range Forecast Impact from Aircraft, Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the RUC Hourly Assimilation Cycle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3