Exploring Ensemble Forecast Sensitivity to Observations for a Convective-Scale Data Assimilation System over the Dallas–Fort Worth Testbed

Author:

Gasperoni Nicholas A.1,Wang Xuguang1,Brewster Keith A.2,Carr Frederick H.12

Affiliation:

1. a School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. b Center for Analysis and Prediction of Storms, University of Oklahoma Norman, Oklahoma

Abstract

Abstract Forecast sensitivity to observation (FSO) methods have become increasingly popular over the past two decades, providing the ability to quantify the impacts of various observing systems on forecasts without having to conduct costly data denial experiments. While adjoint- and ensemble-based FSO are employed in many global operational systems, their use for regional convection-allowing data assimilation (DA) and forecast systems have not been fully examined. In this study, ensemble FSO (EFSO) is explored for high-frequency convective-scale DA for a severe weather case study over the Dallas–Fort Worth testbed. This testbed, originally established by the Collaborative Adaptive Sensing of the Atmosphere (CASA) project, aims to improve high-resolution DA systems by assimilating a variety of existing state and regional mesoscale observing systems to fill gaps of conventional observing networks. This study utilizes EFSO to estimate relative impacts of nonconventional surface observations against conventional observations, and further incorporates assimilated radar observations into EFSO. Results show that, when applying advected localization and a neighborhood upscale averaging technique, EFSO estimates remain correlated and skillful with the actual error reduction of all assimilated observations for the duration of 2-h forecasts. The ability for EFSO to verify against other metrics (surface T, u, υ, q) beside energy norms is also demonstrated, emphasizing that EFSO can be used to evaluate impacts of specific parts of the forecast system rather than integrated quantities. Partitioned EFSO revealed that while conventional and radar observations contributed to most of the total energy, nonconventional observations contributed a significant percentage (up to 25%) of the total impact to surface thermodynamic fields.

Funder

NOAA Research

National Weather Service

Publisher

American Meteorological Society

Reference49 articles.

1. Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting;Ancell, B.,2007

2. The quiet revolution of numerical weather prediction;Bauer, P.,2015

3. Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle;Benjamin, S. G.,2010

4. A new approach for estimating the observation impact in ensemble–variational data assimilation;Buehner, M.,2018

5. Monitoring the observation impact on the short-range forecast;Cardinali, C.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3