Analysis and Prediction of Summer Rainfall over Southwestern Utah

Author:

Horel John D.1,Powell James T.2

Affiliation:

1. a Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. b Radiometrics Corporation, Frederick, Colorado

Abstract

Abstract While many studies have examined intense rainfall and flash flooding during the North American monsoon (NAM) in Arizona, Nevada, and New Mexico, less attention has focused on the NAM’s extension into southwestern Utah. This study relates flash flood reports and Multi-Radar Multi-Sensor (MRMS) precipitation across southwestern Utah to atmospheric moisture content and instability analyses and forecasts from the High-Resolution Rapid Refresh (HRRR) model during the 2021–23 monsoon seasons. MRMS quantitative precipitation estimates over southwestern Utah during the summer depend largely on the areal coverage from the KICX WSR-88D radar near Cedar City, Utah. Those estimates are generally consistent with the limited number of precipitation gauge reports in the region except at extended distances from the radar. A strong relationship is evident between days with widespread precipitation and afternoons with above-average precipitable water (PWAT) and convective available potential energy (CAPE) estimated from HRRR analyses across the region. Time-lagged ensembles of HRRR forecasts (initialization times from 0300 to 0600 UTC) that are 13–18 h prior to the afternoon period when convection is initiating (1800–2100 UTC) are useful for situational awareness of widespread precipitation events after adjusting for underprediction of afternoon CAPE. Improved skill is possible using random forest classification relying only on PWAT and CAPE to predict days experiencing excessive (upper quartile) precipitation. Such HRRR predictions may be useful for forecasters at the Salt Lake City National Weather Service Forecast Office to assist in issuing flash flood potential statements for visitors to national parks and other recreational areas in the region. Significance Statement Summer flash floods in southwestern Utah are a risk to area residents and millions of visitors annually to the region’s national parks, monuments, and recreational areas. The likelihood of flash floods within the region’s catchments depends on the intense afternoon and early evening convection initiated by lift and instability primarily due to terrain–flow interactions over elevated plateaus and mountains. Forecasts at lead times of 13–18 h of moisture and instability from the operational High-Resolution Rapid Refresh model have the potential to predict summer afternoons that are likely to have increased risks for higher rainfall amounts across southwestern Utah, although they are not expected to predict the likelihood of flash floods in any specific locale.

Funder

National Weather Service

Publisher

American Meteorological Society

Reference56 articles.

1. The North American monsoon;Adams, D. K.,1997

2. Comparison of lightning forecasts from the High-Resolution Rapid Refresh model to geostationary lightning mapper observations;Blaylock, B. K.,2020

3. Mechanical forcing of the North American monsoon by orography;Boos, W. R.,2021

4. Random forests;Breiman, L.,2001

5. The excessive rainfall outlook at the Weather Prediction Center: Operational definition, construction, and real-time collaboration;Burke, P. C.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3