Determination of Planetary Boundary Layer Height on Short Spatial and Temporal Scales: A Demonstration of the Covariance Wavelet Transform in Ground-Based Wind Profiler and Lidar Measurements*

Author:

Compton Jaime C.1,Delgado Ruben2,Berkoff Timothy A.2,Hoff Raymond M.3

Affiliation:

1. Physics Department, University of Maryland, Baltimore County, Baltimore, Maryland

2. Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

3. Physics Department, and Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Abstract

Abstract This article explores the application of the covariance wavelet transform (CWT) to lidar and, for the first time to the authors' knowledge, wind profiler data to examine the possibility of accurate and continuous planetary boundary layer (PBL) height measurements on short temporal resolution (1- and 15-min averages, respectively). Determining the mixing in the PBL was one goal of a study of the spatial and diurnal variations of the PBL height over Maryland for July 2011, during NASA's Earth Venture mission DISCOVER-AQ. The PBL heights derived from ground-based lidars [at University of Maryland, Baltimore County (UMBC); 39.25°N, 76.70°W], a 915-MHz wind profiler, and radiosondes (at Beltsville, Maryland; 38.92°N, 77.02°W) were compared. Results from the comparison show an R2 = 0.89, 0.92, and 0.94 correlation between the radiosonde PBL heights and two lidars and wind profiler PBL heights, respectively. Accurate determination of the PBL height by applying the CWT to lidar and wind profilers will allow for improved air quality forecasting and understanding of regional pollution dynamics.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3