Boundary Layer Height and Trends over the Tarim Basin

Author:

Salam Akida1,He Qing2,Abbas Alim3,Wu Tongwen4ORCID,Zhang Jie4,Jie Weihua4,Liu Junjie5

Affiliation:

1. Kezhou Meteorological Administration, Kezhou 845350, China

2. Institute of Desert Meteorology, China Meteorological Administration, Ürümqi 830002, China

3. College of Resources and Environment, Xinjiang Agricultural University, Ürümqi 830052, China

4. Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing 100081, China

5. Anhui Climate Center, Hefei 230031, China

Abstract

This study aimed to examine the spatio-temporal variations in the atmospheric boundary layer height (ABLH) over the Tarim Basin (TB). Monthly ABLH data from the ERA-Interim dataset from January 1979 to December 2018 were used. Periodicity analysis and the Mann–Kendall Abrupt Changes test were employed to identify the change cycle and abrupt change year of the boundary layer height. The Empirical Orthogonal Function (EOF) method was utilized to determine the spatial distribution of the boundary layer height, and the RF method was used to establish the relationship between the ABLH and influencing factors. The results demonstrated that the highest values of ABLH (over 1900 m) were observed in the middle parts of the study area in June, and the ABLH exhibited a significant increase over the TB throughout the study period. Abrupt changes in the ABLH were also identified in 2004, as well as in 2-, 5-, 9-, and 15-year changing cycles. The first EOF ABLH mode indicated that the middle and northeast regions are relatively high ABLH areas within the study area. Additionally, the monthly variations in ABLH show a moderately positive correlation with air temperature, while exhibiting a negative correlation with air pressure and relative humidity.

Funder

National Natural Science Foundation of China

Tianshan Talent Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3