Continuous monitoring of the boundary-layer top with lidar

Author:

Baars H.,Ansmann A.,Engelmann R.,Althausen D.

Abstract

Abstract. Continuous lidar observations of the top height of the boundary layer (BL top) have been performed at Leipzig (51.3° N, 12.4° E), Germany, since August 2005. The results of measurements taken with a compact, automated Raman lidar over a one–year period (February 2006 to January 2007) are presented. Main goals of the study are (a) to demonstrate that BL top monitoring with lidar throughout the year is possible, (b) to present the required data analysis method that permits an automated, robust retrieval of BL top at all weather situations, and (c) to use this opportunity to compare the lidar-derived BL top data with respective BL tops hourly predicted by the regional weather forecast model COSMO. Four different lidar methods for the determination of the BL top are discussed. The wavelet covariance algorithm is modified so that an automated retrieval of BL depths from lidar data is possible. Three case studies of simultaneous observations with the Raman lidar, a vertical-wind Doppler lidar, and accompanying radiosonde profiling of temperature and humidity are presented to compare the potential and the limits of the four lidar techniques. The statistical analysis of the one-year data set reveals that the seasonal mean of the daytime (about 08:00–20:00 Local Time, LT) maximum BL top is 1400 m in spring, 1800 m in summer, 1200 m in autumn, and 800 m in winter at the continental, central European site. BL top typically increases by 100–300 m per hour in the morning of convective days. The comparison between the lidar-derived BL top heights and the predictions of COSMO yields a general underestimation of the BL top by about 20% by the model.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference37 articles.

1. Althausen, D., Engelmann, R., Foster, R., Rhone, P., and Baars, H.: Portable Raman lidar for determination of particle backscatter and extinction coefficients, in: Reviewed and revised papers presented at the 22nd ILRC, ESA SP–561, Volume 1, edited by: Pappalardo, G. and Amodeo, A., 83–86, ESA Publications Division, ESTEC, Noordwijk, The Netherlands, 2004.

2. Althausen, D., Engelmann, R., Baars, H., Heese, B., and Komppula, M.: Portable Raman lidar Polly$^\\rm XT$ for automatic profile measurements of aerosol backscatter and extinction coefficient, in: Proceedings, 24th ILRC, edited by: Hardesty, M. and Mayor, S., 45–48, NCAR, Boulder, CO, 2008.

3. Ansmann, A. and Müller, D.: Lidar – Range-Resolved Optical Remote Sensing of the Atmosphere, chap. Lidar and atmospheric aerosol particles, Springer, New York, 2005.

4. Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131, 1992.

5. Ansmann, A., Engelmann, R., Althausen, D., Wandinger, U., Hu, M., Zhang, Y., and He, Q.: High aerosol load over the Pearl River Delta, South China, observed with Raman lidar and Sun photometer, Geophys. Res. Lett., 32, L13815, https://doi.org/10.1029/2005GL023094, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3