Comparison of scanning aerosol lidar and in situ measurements of aerosol physical properties and boundary layer heights

Author:

Zhang HenghengORCID,Rolf ChristianORCID,Tillmann RalfORCID,Wesolek ChristianORCID,Wienhold Frank Gunther,Leisner Thomas,Saathoff HaraldORCID

Abstract

Abstract. The spatiotemporal distribution of aerosol particles in the atmosphere has a great impact on radiative transfer, clouds, and air quality. Modern remote sensing methods, as well as airborne in situ measurements by unpiloted aerial vehicles (UAV) or balloons, are suitable tools to improve our understanding of the role of aerosol particles in the atmosphere. To validate the measurement capabilities of three relatively new measurement systems and to bridge the gaps that are often encountered between remote sensing and in situ observation, as well as to investigate aerosol particles in and above the boundary layer, we conducted two measurement campaigns and collected a comprehensive dataset employing a scanning aerosol lidar, a balloon-borne radiosonde with the Compact Optical Backscatter Aerosol Detector (COBALD), an optical particle counter (OPC) on a UAV, and a comprehensive set of ground-based instruments. The extinction coefficients calculated from near-ground-level aerosol size distributions measured in situ are well correlated with those retrieved from lidar measurements, with a slope of 1.037 ± 0.015 and a Pearson correlation coefficient of 0.878, respectively. Vertical profiles measured by an OPC-N3 on a UAV show similar vertical particle distributions and boundary layer heights to lidar measurements. However, the sensor, OPC-N3, shows a larger variability in the aerosol backscatter coefficient measurements, with a Pearson correlation coefficient of only 0.241. In contrast, the COBALD data from a balloon flight are well correlated with lidar-derived backscatter data from the near-ground level up to the stratosphere, with a slope of 1.063 ± 0.016 and a Pearson correlation coefficient of 0.925, respectively. This consistency between lidar and COBALD data reflects the good data quality of both methods and proves that lidar can provide reliable and spatial distributions of aerosol particles with high spatial and temporal resolutions. This study shows that the scanning lidar has the capability to retrieve backscatter coefficients near the ground level (from 25 to 50 m above ground level) when it conducts horizontal measurement, which is not possible for vertically pointing lidar. These near-ground-level retrievals compare well with ground-level in situ measurements. In addition, in situ measurements on the balloon and UAV validated the scanning lidar retrievals within and above the boundary layer. The scanning aerosol lidar allows us to measure aerosol particle distributions and profiles from the ground level to the stratosphere with an accuracy equal to or better than in situ measurements and with a similar spatial resolution.

Funder

Helmholtz-Zentrum für Umweltforschung

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3