Evolution of a Long-Track Violent Tornado within a Simulated Supercell

Author:

Orf Leigh1,Wilhelmson Robert2,Lee Bruce3,Finley Catherine4,Houston Adam5

Affiliation:

1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

2. University of Illinois at Urbana–Champaign, Urbana, Illinois

3. High Impact Weather Research and Consulting, LLC, Deep River, Minnesota

4. Saint Louis University, St. Louis, Missouri

5. University of Nebraska–Lincoln, Lincoln, Nebraska

Abstract

Abstract Tornadoes are among nature’s most destructive forces. The most violent, long-lived tornadoes form within supercell thunderstorms. Tornadoes ranked EF4 and EF5 on the Enhanced Fujita scale that exhibit long paths are the least common but most damaging and deadly type of tornado. In this article we describe an ultra-high-resolution (30-m gridpoint spacing) simulation of a supercell that produces a long-track tornado that exhibits instantaneous near-surface storm-relative winds reaching as high as 143 m s−1. The computational framework that enables this work is described, including the Blue Waters supercomputer, the CM1 cloud model, a data management framework built around the HDF5 scientific data format, and the VisIt and Vapor visualization tools. We find that tornadogenesis occurs in concert with processes not clearly seen in previous supercell simulations, including the consolidation of numerous vortices and vorticity patches along the storm’s forward-flank downdraft boundary and the intensification of a feature we call a streamwise vorticity current (SVC), a current of horizontal vorticity that is tilted upward into the storm’s low-level mesocyclone. The SVC is found throughout the genesis and much of the maintenance phase of the tornado, where it appears to help drive the storm’s vigorous low-level updraft. We compare stages of the storm’s maintenance phase to observations. We find that tornado decay occurs rapidly throughout the depth of the tornado and is associated with a weakening of the SVC and the development of a strong rainy downdraft that encircles the tornado, which has moved rearward into the storm’s cold pool.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3