Investigating the Near-Surface Wind Fields of Downbursts Using a Series of High-Resolution Idealized Simulations

Author:

Moore Andrew1

Affiliation:

1. a NOAA/NCEP/Storm Prediction Center, Norman, Oklahoma

Abstract

Abstract Short-lived and poorly organized convective cells, often called weakly forced thunderstorms (WFTs), are a common phenomenon during the warm season across the eastern and southeastern United States. While typically benign, wet downbursts emanating from such convection can have substantial societal impacts, including tree, power line, and property damage from strong outflow winds. Observational studies have documented the occurrence of severe (25.7 m s−1 or higher) wind speeds from wet downbursts, but the frequency of severe downbursts, including the spatial extent and temporal duration of severe winds, remains unclear. The ability for modern observing networks to reliably observe such events is also unknown; however, answering these questions is important for improving forecast skill and verifying convective warnings accurately. This study attempts to answer these questions by drawing statistical inferences from 97 high-resolution idealized simulations of single-cell downburst events. It was found that while 35% of the simulations featured severe winds, the spatial and temporal extent of such winds is limited—O(10) km2 or less and persisting for around 5 min on average. Furthermore, through a series of simulated network experiments, it is postulated that the probability that a modern mesonet observes a severe wind gust given a severe downburst is around 1%. From these results, a statistical argument is made that most tree impacts associated with pulse convection are likely caused by subsevere winds. Several implications for forecasting, warning, and verifying WFT events fall out from these discussions.

Publisher

American Meteorological Society

Reference121 articles.

1. Numerical simulation of downburst wind, flow over real topography;Abd-Elaal, E.-S.,2018

2. Wind speed perception and risk;Adgas, D.,2012

3. Large-eddy simulation of a microburst;Anabor, V.,2011

4. Investigation of near-storm environments for tornado events and warnings;Anderson-Frey, A. K.,2016

5. Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids;Armfield, S. W.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3