An Observational Examination of Long-Lived Supercells. Part II: Environmental Conditions and Forecasting

Author:

Bunkers Matthew J.1,Johnson Jeffrey S.1,Czepyha Lee J.1,Grzywacz Jason M.2,Klimowski Brian A.3,Hjelmfelt Mark R.4

Affiliation:

1. NOAA/National Weather Service, Rapid City, South Dakota

2. NOAA/National Weather Service, Dodge City, Kansas

3. NOAA/National Weather Service, Bellemont, Arizona

4. South Dakota School of Mines and Technology, Rapid City, South Dakota

Abstract

Abstract The local and larger-scale environments of 184 long-lived supercell events (containing one or more supercells with lifetimes ≥4 h; see Part I of this paper) are investigated and subsequently compared with those from 137 moderate-lived events (average supercell lifetime 2–4 h) and 119 short-lived events (average supercell lifetime ≤2 h) to better anticipate supercell longevity in the operational setting. Consistent with many previous studies, long-lived supercells occur in environments with much stronger 0–8-km bulk wind shear than what is observed for short-lived supercells; this strong shear leads to significant storm-relative winds in the mid- to upper levels for the longest-lived supercells. Additionally, the bulk Richardson number falls into a relatively narrow range for the longest-lived supercells—ranging mostly from 5 to 45. The mesoscale to synoptic-scale environment can also predispose a supercell to be long or short lived, somewhat independent of the local environment. For example, long-lived supercells may occur when supercells travel within a broad warm sector or else in close proximity to mesoscale or larger-scale boundaries (e.g., along or near a warm front, an old outflow boundary, or a moisture/buoyancy axis), even if the deep-layer shear is suboptimal. By way of contrast, strong atmospheric forcing can result in linear convection (and thus shorter-lived supercells) in a strongly sheared environment that would otherwise favor discrete, long-lived supercells.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3