Polarimetric Radar Observations of a Long-Lived Supercell and Associated Tornadoes on 10–11 December 2021

Author:

Van Den Broeke Matthew S.1ORCID,Wilson Matthew B.1,Van Den Broeke Cynthia A.2,Healey Devon J.1,Wood Michaela J.1,Nelson Raychel E.1

Affiliation:

1. a Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

2. b Lincoln, Nebraska

Abstract

Abstract We present environmental and polarimetric radar observations of a long-lived December supercell that tracked approximately 750 km from Arkansas to northern Kentucky. The storm was associated with two long-track EF4 tornadoes, one of which was among the longest-tracked tornadoes recorded in the United States. The supercell’s life cycle is documented from 2000 UTC 10 to 0700 UTC 11 December 2021, using data from five operational polarimetric weather radars. After convection initiation in central Arkansas, it took nearly 4 h for a supercell to develop. Afterward, the storm’s ZDR column and arc became anomalously large leading up to genesis of the first EF4 tornado. During this time, the storm’s environment had moderate convective available potential energy (CAPE) and strong deep-layer shear. A cell interaction at about 0200 UTC disrupted the supercell updraft, weakening the ZDR arc and column, and initiating the largest radar-implied hailfall event observed with this storm. The remnant circulation associated with the first EF4 tornado did not fully dissipate, and it appeared to merge with the low-level mesocyclone on the nose of a rear-flank downdraft surge likely initiated by the hailfall. It is hypothesized that this merger was important to the intensification of the storm’s second EF4 tornado, which lasted nearly 3 h and traveled approximately 267 km. During the second EF4 tornado the storm experienced decreasing CAPE and increasing storm relative helicity. Increasing interactions with other cells eventually weakened the storm, and its original updraft was obscured before the storm’s remnants dissipated in northern Kentucky. Significance Statement In December 2021, a long-lived supercell thunderstorm produced two long-track, violent tornadoes, including one that produced historic damage across western Kentucky. Radar observations indicate that, once the storm became a supercell, its updraft became anomalously large relative to similar storms studied prior. Simultaneously its storm-relative inflow strengthened markedly, supporting the first long-lived tornado. Interactions with a developing thunderstorm disrupted the supercell’s updraft, leading to hail fallout and updraft weakening. The remnant circulation associated with the first strong tornado merged with the supercell’s updraft and became a rotation source for the second long-track tornado, which persisted for nearly 3 h. Eventually interactions with other thunderstorms weakened the supercell.

Funder

University of Nebraska-Lincoln

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference73 articles.

1. The dependence of numerically simulated cyclic mesocyclogenesis upon environmental vertical wind shear;Adlerman, E. J.,2005

2. Remote sensing of hail with a dual linear polarization radar;Aydin, K.,1986

3. A multiscale analysis of the 1 June 2011 northeast U.S. severe weather outbreak and associated Springfield, Massachusetts tornado;Banacos, P. C.,2012

4. High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell;Beck, J. R.,2006

5. A long-lived tornado on 7 December 2010 in mainland Portugal;Belo-Pereira, M.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3