The impact of aerosols and model grid spacing on a supercell storm from Swabian MOSES 2021

Author:

Barthlott Christian1ORCID,Czajka Beata1,Kunz Michael1ORCID,Saathoff Harald2ORCID,Zhang Hengheng2,Böhmländer Alexander2,Gasch Philipp1,Handwerker Jan1,Kohler Martin1,Wilhelm Jannik1ORCID,Wieser Andreas1,Hoose Corinna1

Affiliation:

1. Institute of Meteorology and Climate Research Tropospheric Research (IMKTRO) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

2. Institute of Meteorology and Climate Research Atmospheric Aerosol Research (IMKAAF) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

Abstract

AbstractThe supercell storm that occurred in southwestern Germany on June 23, 2021, had an exceptionally long lifetime of 7.5 hr, travelled a distance of nearly 190 km, and produced large amounts of hail. During that summer, the Swabian MOSES field campaign was held in that area, and several hydro‐meteorological measurements are available, as the storm passed directly over the main observation site. We present hindcasts of this event with the Icosahedral Non‐hydrostatic model using two horizontal grid spacings (i.e., 2 km, 1 km) with a single‐moment and an advanced double‐moment microphysics scheme. Numerical results show that all 2 km model realizations do not simulate convective precipitation at the correct location and time. For the 1 km grid spacing, changes in aerosol concentration resulted in large changes in convective precipitation. Only the 1 km run assuming a low cloud condensation nuclei (CCNs) concentration is able to realistically capture the storm, whereas no supercell is simulated in the more polluted scenarios. Observed aerosol particle concentrations indicate that CCNs values were the lowest of the month, which suggests that the low aerosol concentration is a reasonable assumption. The thermodynamic structure of the pre‐convective environment, as well as other observations, showed the best agreement to this model run as well, indicating that the good representation of the supercell was obtained for the right reason. The automatic tracking of individual clouds revealed that more convective cells with longer lifetimes are simulated at finer resolution. We also find a negative aerosol–precipitation effect that is not only due to a reduced collision–coalescence process, but also to weaker cold‐rain processes. These findings demonstrate the benefits of using an aerosol‐aware double‐moment microphysics scheme for convective‐scale predictability and that the use of different CCNs concentrations can determine whether a supercell is successfully simulated or not.

Funder

Karlsruhe Institute of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3