Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron

Author:

D'Elia J N1,Salyers A A1

Affiliation:

1. Department of Microbiology, University of Illinois, Urbana 61801, USA.

Abstract

Bacteroides thetaiotaomicron, a gram-negative obligate anaerobe, appears to utilize starch by first binding the polymer to its surface and then translocating it into the periplasmic space. Several genes that encode enzymes or outer membrane proteins involved in starch utilization have been identified. These have been called sus genes, for starch utilization system. Previous studies have shown that sus structural genes are regulated at the transcriptional level and their expression is induced by maltose. We report here the identification and characterization of a gene, susR, which appears to be responsible for maltose-dependent regulation of the sus structural genes. The deduced amino acid sequence of SusR protein had a helix-turn-helix motif at its carboxy-terminal end, and this region had highest sequence similarity to the corresponding regions of known transcriptional activators. A disruption in susR eliminated the expression of all known sus structural genes, as expected if susR encoded an activator of sus gene expression. The expression of susR itself was not affected by the growth substrate and was not autoregulated, suggesting that binding of SusR to maltose might be the step that activates SusR. Three susR-controlled structural genes, susA, susB, and susC, are located immediately upstream of susR. These genes are organized into two transcriptional units, one containing susA and another containing susB and susC. susA was expressed at a lower level than susBC, and susA expression was more sensitive to the gene dosage of susR than was that of the susBC operon. An unexpected finding was that increasing the number of copies of susR in B. thetaiotaomicron increased the rate of growth on starch. This effect could be due to higher levels of susA expression. Whatever the explanation, the level of SusR in the cell appears to be a limiting factor for growth on starch.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3