Structural insights into α‐(1→6)‐linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae

Author:

Nakamura Shuntaro1ORCID,Kurata Rikuya2,Miyazaki Takatsugu123ORCID

Affiliation:

1. Department of Bioscience, Graduate School of Science and Technology Shizuoka University Japan

2. Department of Agriculture, Graduate School of Integrated Science and Technology Shizuoka University Japan

3. Research Institute of Green Science and Technology Shizuoka University Japan

Abstract

Glycoside hydrolase family 97 (GH97) comprises enzymes like anomer‐inverting α‐glucoside hydrolases (i.e., glucoamylase) and anomer‐retaining α‐galactosidases. In a soil bacterium, Flavobacterium johnsoniae, we previously identified a GH97 enzyme (FjGH97A) within the branched dextran utilization locus. It functions as an α‐glucoside hydrolase, targeting α‐(1→6)‐glucosidic linkages in dextran and isomaltooligosaccharides (i.e., glucodextranase). FjGH97A exhibits a preference for α‐(1→6)‐glucoside linkages over α‐(1→4)‐linkages, while Bacteroides thetaiotaomicron glucoamylase SusB (with 69% sequence identity), which is involved in the starch utilization system, exhibits the highest specificity for α‐(1→4)‐glucosidic linkages. Here, we examined the crystal structures of FjGH97A in complexes with glucose, panose, or isomaltotriose, and analyzed the substrate preferences of its mutants to identify the amino acid residues that determine the substrate specificity for α‐(1→4)‐ and α‐(1→6)‐glucosidic linkages. The overall structure of FjGH97A resembles other GH97 enzymes, with conserved catalytic residues similar to anomer‐inverting GH97 enzymes. A comparison of active sites between FjGH97A and SusB revealed differences in amino acid residues at subsites +1 and +2 (specifically Ala195 and Ile378 in FjGH97A). Among the three mutants (A195S, I378F, and A195S‐I378F), A195S and A195S‐I378F exhibited increased activity toward α‐(1→4)‐glucoside bonds compared to α‐(1→6)‐glucoside bonds. This suggests that Ala195, located on the Gly184‐Thr203 loop (named loop‐N) conserved within the GH97 subgroup, including FjGH97A and SusB, holds significance in determining linkage specificity. The conservation of alanine in the active site of the GH97 enzymes, within the same gene cluster as the putative dextranase, indicates its crucial role in determining the specificity for α‐(1→6)‐glucoside linkage.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3