Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes

Author:

Anderson K L1,Salyers A A1

Affiliation:

1. Department of Microbiology, University of Illinois, Urbana 61801.

Abstract

Bacteroides thetaiotaomicron can utilize amylose, amylopectin, and pullulan as sole sources of carbon and energy. The enzymes that degrade these polysaccharides were found to be primarily cell associated rather than extracellular. Although some activity was detected in extracellular fluid, this appeared to be the result of cell lysis. The cell-associated amylase, amylopectinase, and pullulanase activities partitioned similarly to the periplasmic marker, acid phosphatase, when cells were exposed to a cold-shock treatment. Two other enzymes associated with starch breakdown, alpha-glucosidase and maltase, appeared to be located in the cytoplasm. Intact cells of B. thetaiotaomicron were found to bind 14C-starch. Binding was probably mediated by a protein because it was saturable and was decreased by treatment of cells with proteinase K. Results of competition experiments showed that the starch-binding proteins had a preference for maltodextrins larger than maltohexaose and a low affinity for maltose and maltotriose. Both the degradative enzymes and starch binding were induced by maltose. These findings indicate that starch utilization by B. thetaiotaomicron apparently does not involve secretion of extracellular enzymes. Rather, binding of the starch molecule to the cell surface appears to be a first step to passing the molecule through the outer membrane and into the periplasmic space.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3