Affiliation:
1. Department of Experimental Therapeutics, M. D. Anderson Cancer Center, Houston, Texas 77030
Abstract
ABSTRACT
The hypoxia-inducible factor 1α (HIF-1α) is the master regulator of the cellular response to hypoxia. A key regulator of HIF-1α is von Hippel-Lindau protein (pVHL), which mediates the oxygen-dependent, proteasomal degradation of HIF-1α in normoxia. Here, we describe a new regulator of HIF-1α, the hypoxia-associated factor (HAF), a novel E3-ubiquitin ligase that binds HIF-1α leading to its proteasome-dependent degradation irrespective of cellular oxygen tension. HAF, a protein expressed in proliferating cells, binds and ubiquitinates HIF-1α in vitro, and both binding and E3 ligase activity are mediated by HAF amino acids 654 to 800. Furthermore, HAF overexpression decreases HIF-1α levels in normoxia and hypoxia in both pVHL-competent and -deficient cells, whereas HAF knockdown increases HIF-1α levels in normoxia, hypoxia, and under epidermal growth factor stimulation. In contrast, HIF-2α is not regulated by HAF. In vivo, tumor xenografts from cells overexpressing HAF show decreased levels of HIF-1α accompanied by decreased tumor growth and angiogenesis. Therefore, HAF is the key mediator of a new HIF-1α-specific degradation pathway that degrades HIF-1α through a new, oxygen-independent mechanism.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
154 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献