Hypoxia Up-Regulates Hypoxia-Inducible Factor-1α Transcription by Involving Phosphatidylinositol 3-Kinase and Nuclear Factor κB in Pulmonary Artery Smooth Muscle Cells

Author:

BelAiba Rachida S.1,Bonello Steve1,Zähringer Christian1,Schmidt Stefanie1,Hess John1,Kietzmann Thomas2,Görlach Agnes1

Affiliation:

1. *Experimental Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich at the Technical University Munich, D-80636 Munich, Germany; and

2. Faculty of Chemistry/Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany

Abstract

The oxygen sensitive α-subunit of the hypoxia-inducible factor-1 (HIF-1) is a major trigger of the cellular response to hypoxia. Although the posttranslational regulation of HIF-1α by hypoxia is well known, its transcriptional regulation by hypoxia is still under debate. We, therefore, investigated the regulation of HIF-1α mRNA in response to hypoxia in pulmonary artery smooth muscle cells. Hypoxia rapidly enhanced HIF-1α mRNA levels and HIF-1α promoter activity. Furthermore, inhibition of the phosphatidylinositol 3-kinase (PI3K)/AKT but not extracellular signal-regulated kinase 1/2 pathway blocked the hypoxia-dependent induction of HIF-1α mRNA and HIF-1α promoter activity, suggesting involvement of a PI3K/AKT-regulated transcription factor. Interestingly, hypoxia also induced nuclear factor-κB (NFκB) nuclear translocation and activity. In line, expression of the NFκB subunits p50 and p65 enhanced HIF-1α mRNA levels, whereas blocking of NFκB by an inhibitor of nuclear factor-κB attenuated HIF-1α mRNA induction by hypoxia. Reporter gene assays revealed the presence of an NFκB site within the HIF-1α promoter, and mutation of this site abolished induction by hypoxia. In line, gel shift analysis and chromatin immunoprecipitation confirmed binding of p50 and p65 NFκB subunits to the HIF-1α promoter under hypoxia. Together, these findings provide a novel mechanism in which hypoxia induces HIF-1α mRNA expression via the PI3K/AKT pathway and activation of NFκB.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3