Hyperoxic-hypoxic Paradox: Breast Cancer Microenvironment and an Innovative Treatment Strategy

Author:

Ray Suman Kumar1ORCID,Mukherjee Sukhes2

Affiliation:

1. Independent Researcher, Bhopal, Madhya Pradesh, 462020, India

2. Department of Biochemistry, All India Institute of Medical Science, Bhopal, Madhya Pradesh, 462020, India

Abstract

Abstract: A small therapeutic range of oxygen is required for effective metabolism. As a result, hypoxia (low oxygen concentration) is one of the most potent inducers of gene expression, metabolic alterations, and regenerative processes, such as angiogenesis, stem cell proliferation, migration, and differentiation. The cellular response is controlled by sensing the increased oxygen levels (hyperoxia) or hypoxia via specific chemoreceptor cells. Surprisingly, changes in free oxygen concentration instead of absolute oxygen levels may be regarded as a deficiency of oxygen at the cellular level. Recurrent intermittent hyperoxia may trigger many mediators of cellular pathways typically generated during hypoxia. The dilemma of hyperoxic-hypoxic conditions is known as the hyperoxic-hypoxic paradox. According to the latest data, the hypoxic microenvironment, crucial during cancer formation, has been demonstrated to play a key role in regulating breast cancer growth and metastasis. Hypoxic circumstances cause breast cancer cells to respond in a variety of ways. Transcription factors are identified as hypoxia-inducible factors (HIFs) that have been suggested to be a factor in the pathobiology of breast cancer and a possible therapeutic target, driving the cellular response to hypoxia. Breast cancer has a dismal prognosis due to a high level of resistance to practically all well-known cancer management that has been related to hypoxia-based interactions between tumor cells and the stromal milieu. We attempt to review the enigma by exploring the starring roles of HIFs in breast cancer, the HIF paradox, and the hyperoxic-hypoxic enigma.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3