Affiliation:
1. Abteilung Pharmazeutische Mikrobiologie, Universität Bonn, Germany.
Abstract
We have determined the DNA sequence of the gyrA gene of the fluoroquinolone-resistant Escherichia coli isolate 205096 (MIC of ciprofloxacin, 128 micrograms/ml), which was recently demonstrated to be a gyrA mutant (P. Heisig and B. Wiedemann, Antimicrob. Agents Chemother. 35:2031-2036, 1991). Compared with the gyrA+ gene of E. coli K-12, 55 nucleotide changes were found. Three of these resulted in amino acid exchanges: Ser-83-->Leu, Asp-87-->Gly, and Asp-678-->Glu. A 0.7-kb DNA fragment containing two of these mutations (Ser-83-->Leu and Asp-87-->Gly) was isolated and fused in frame to the residual 3' coding region of gyrA+ in a plasmid to yield a chimeric gyrA gene (gyrA#). After introduction into E. coli 205096, this gyrA# gene does not increase the fluoroquinolone susceptibility of the resulting heterodiploid strain in a dominance test, while the gyrA+ gene does. The ciprofloxacin concentration necessary to inhibit by 90% (IC90) the supercoiling activity of gyrase isolated from E. coli 205096 is above 2,000 micrograms/ml. An identical result was found for gyrase reconstituted in vitro from the gyrB+ gene product and the chimeric gyrA# gene product. This is more than a 4,000-fold increase compared with the IC90 determined for gyrase from E. coli K-12 (gyrA+) (IC90, 0.5 microgram of ciprofloxacin per ml). No indications for the involvement of the gyrB gene or for alterations in quinolone permeation were found.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献