Intravenous Mouse Infection Model for Studying the Pathology of Enterococcus faecalis Infections

Author:

Gentry-Weeks Claudia1,Estay Monica1,Loui Cindy1,Baker Dale12

Affiliation:

1. Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523

2. Genentech, Inc., South San Francisco, California 94080-4990

Abstract

ABSTRACT An intravenous mouse infection model was used to compare the virulence of Enterococcus faecalis strains, to study bacterial localization and organ histopathology, and to examine the effects of Nramp1 and gamma interferon (IFN-γ) on the course of infection. Infection of BALB/c mice with 5 × 10 8 CFU of E. faecalis JH2-2, MGH-2, 418, DS16C2, or OG1X revealed the following virulence ranking (from highest to lowest): MGH-2, 418, DS16C2, JH2-2, and OG1X. Discernible differences in the number of MGH-2 and JH2-2 bacteria were observed at 7 days (168 h) in the blood ( P = 0.037), at 72 h in the liver ( P = 0.002), and at 8 h in the spleen ( P = 0.036). At these time points, the number of MGH-2 bacteria was higher in the blood and liver while the number of JH2-2 bacteria was higher in the spleen. At 72 h, livers from MGH-2-infected mice had higher numbers of coalescing aggregates of leukocytes and a greater degree of caseous necrosis than those from JH2-2-infected mice. These results indicate a correlation between the virulence of the E. faecalis strain, the number of bacteria in the liver, and the degree of histopathology of the liver at 72 h postinfection. IFN-γ was important in E. faecalis infection, since IFN-γ gene knockout mice had reduced mortality and massive coagulative necrosis was observed in wild-type mice. The contribution of Nramp1 was unclear, since Nramp1 −/− mice and the respective control mice were innately resistant to E. faecalis . The mortality of mice in this model is probably due to induction of cytokine release and massive coagulative necrosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3