Microbial Water Relations: Features of the Intracellular Composition of Sugar-Tolerant Yeasts

Author:

Brown A. D.1

Affiliation:

1. School of Microbiology, University of New South Wales, Kensington, 2033, Australia

Abstract

Several factors contributed to differences in intracellular composition between sugar-tolerant (osmophilic) and nontolerant species of yeast. One such factor was the difference in accumulation of those nonelectrolytes whose uptake was not dominated by vigorous metabolism. In such cases (lactose and glycerol), the sugar-tolerant species had a much lower capacity for the solute than did the nontolerant species. Sucrose uptake was consistently different between all sugar-tolerant strains on the one hand and all nontolerant strains on the other. The difference was attributable in part to metabolism of sucrose by the nontolerant yeasts. The major difference between the two types of yeast, however, was the presence of one or more polyhydric alcohols at high concentrations within each of the sugar-tolerant strains but none of the nontolerant strains. In most cases the major polyol was arabitol. The solute concentration (and, hence, water availability) of the growth medium affected both the amount of arabitol produced by Saccharomyces rouxii and the proportion retained by the yeast after brief washing with water at 0 C. When the yeast was suspended in a buffer at 30 C, the polyol leaked out at a slow, constant, reproducible rate. The polyene antibiotic amphotericin B caused rapid release of polyol by the yeast, the rate being proportional to amphotericin concentration. Contact of the yeast with glucose (1 mM) caused an extremely rapid ejection of polyol which lasted less than 40 s. Some implications of these results are discussed, as is the role of the polyol as a compatible solute in determining the water relations of the yeast.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3