Properties of halophil nicotinamide–adenine dinucleotide phosphate-specific isocitrate dehydrogenase. True Michaelis constants, reaction mechanisms and molecular weights

Author:

Aitken D. M.1,Brown A. D.1

Affiliation:

1. School of Microbiology, University of New South Wales, Kensington, N.S.W. 2033, Australia

Abstract

True values of Michaelis constants of the NADP+-specific isocitrate dehydrogenase from Halobacterium salinarium were not very different from those of the apparent constants reported by Aitken et al. (1970). The true constants were affected by salt in a similar manner to that of the apparent constants obtained with NADP+ at fixed concentrations of 1.0–0.2mm and threo-ds-(+)-isocitrate at fixed concentrations of 2.0–0.125mm. The response of apparent Vmax. to salt concentration was highly dependent on fixed substrate concentration in solutions of sodium chloride but much less so in solutions of potassium chloride. At several levels the results emphasize the difficulty of generalizing about the salt relations of a halophil enzyme without adequate attention to substrate concentration. The enzyme has at least two different reaction mechanisms depending on salt concentration. In its ‘physiological’ form (i.e. in 1.0m-potassium chloride), and also in 1.0m-sodium chloride, the reaction mechanism is ordered with NADP+ the first substrate added and NADPH the last product released. In 0.25m-sodium chloride, however, the mechanism is different and is probably non-sequential. In 4.0m-sodium chloride with low concentrations of either fixed substrate, there was evidence of a co-operative action of the variable substrate. The evidence suggests that salt participates in the reaction mechanism in two ways: one is the reversible addition to the enzyme in a manner analogous to that of a substrate; the other is dead-end complex-formation. The relative contributions of these two types of reaction determine whether salt activates or inhibits the enzyme. In addition, the inhibition caused by high concentrations of sodium chloride is more complex than the corresponding inhibition by potassium chloride. Gel-filtration experiments indicated that at very low salt concentrations the enzyme has an apparent molecular weight of about 70800. In ‘physiological’ concentrations of potassium chloride the enzyme appears to be a dimer (mol.wt. 122000–135000) and, in 1.0–4.0m-sodium chloride, it behaves as a trimer or tetramer (mol.wt. 224000–251000). A preliminary method of purifying the enzyme is described.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3