Low efficiency of the 5' nontranslated region of hepatitis A virus RNA in directing cap-independent translation in permissive monkey kidney cells

Author:

Whetter L E1,Day S P1,Elroy-Stein O1,Brown E A1,Lemon S M1

Affiliation:

1. Department of Medicine, University of North Carolina at Chapel Hill 27599-7030.

Abstract

To characterize in vivo the translational control elements present in the 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) RNA, we created an HAV-permissive monkey kidney cell line (BT7-H) that stably expresses T7 RNA polymerase and carries out cytoplasmic transcription of uncapped RNA from transfected DNA containing the T7 promoter. The presence of an internal ribosomal entry site (IRES) within the 5'NTR of HAV was confirmed by using BT7-H cells transcribing bicistronic RNAs in which the 5'NTR was placed within the intercistronic space, controlling translation of a downstream reporter protein (bacterial chloramphenicol acetyltransferase). However, translation directed by the 5'NTR in these bicistronic transcripts and in monocistronic T7 transcripts in which the HAV 5'NTR was placed upstream of the chloramphenicol acetyltransferase coding sequence was very inefficient compared with the translation of monocistronic transcripts containing either the IRES of encephalomyocarditis (EMC) virus or a short nonpicornavirus 5' nontranslated leader sequence. A large deletion within the HAV IRES (delta 355-532) eliminated IRES activity in bicistronic transcripts. In contrast, larger deletions within the IRES in monocistronic transcripts (delta 1-354, delta 1-532, delta 1-633, and delta 158-633) resulted in 4- to 14-fold increases in translation. In the latter case, this was most probably due to a shift from IRES-directed translation to translation initiation by 5'-end-dependent scanning. Translation of RNAs containing either the EMC virus IRES or the nonpicornavirus leader was significantly enhanced by cotransfection of the reporter constructs with pEP2A, which directs transcription of RNA containing the EMC virus IRES fused to the poliovirus 2Apro coding region. This 2Apro enhancement of cap-independent translation suggests a greater availability of limiting cellular translation factors following 2Apro-mediated cleavage of the p220 subunit of the eukaryotic initiation factor eIF-4F and subsequent shutdown of 5' cap-dependent translation. In contrast, pEP2A cotransfection resulted in severe inhibition of translation directed by the HAV IRES in either monocistronic or bicistronic transcripts. This inhibition was due to competition from the EMC virus IRES present in pEP-2A transcripts, as well as the expression of proteolytically active 2Apro. 2Apro-mediated suppression of HAV translation was not seen with transcripts containing large deletions in the HAV IRES (delta 158-633, delta 1-532, or delta 1-633). These data suggest that the HAV IRES may have a unique requirement for intact p220 or that it may be dependent on active expression of another cellular translation factor which is normally present in severely limiting quantities.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3