In vitro characterization of an internal ribosomal entry site (IRES) present within the 5' nontranslated region of hepatitis A virus RNA: comparison with the IRES of encephalomyocarditis virus

Author:

Brown E A1,Zajac A J1,Lemon S M1

Affiliation:

1. Department of Medicine, University of North Carolina at Chapel Hill 27599-7030.

Abstract

The lengthy 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) forms a highly ordered secondary structure, which has been suggested to play an important role in controlling viral translation by allowing for translation initiation by internal ribosome entry. To test this hypothesis, synthetic bicistronic RNAs, with all or part of the HAV 5'NTR in the intercistronic space, were translated in rabbit reticulocyte lysates. In the presence of an upstream cistron designed to block ribosomal scanning, the HAV 5'NTR was capable of directing the internal initiation of translation, confirming the presence of an internal ribosome entry site (IRES). Analysis of various deletion mutants demonstrated that the 5' border of the IRES is located between nucleotides 151 and 257, while the 3' border extends to the 3' end of the 5'NTR, between nucleotide 695 and the first initiation codon at 735. Except for a segment between bases 638 and 694, deletion of stem-loop structures between bases 151 and the 3' end of the 5'NTR inhibited or abolished translation. The addition of a 5' cap structure (m7GpppN) to monocistronic or bicistronic transcripts decreased the translation of a reporter gene downstream of the HAV 5'NTR but enhanced translation of the upstream cistron in bicistronic transcripts. This finding indicates that a 5' cap structure is inhibitory to HAV IRES-directed translation initiation and that the cap structure and the HAV IRES probably compete for the same limiting translation factors. The efficiency with which monocistronic constructs containing the HAV 5'NTR directed translation in reticulocyte lysates was compared with results for monocistronic constructs containing the IRES of the more rapidly growing encephalomyocarditis virus (EMCV). These results indicated that the HAV 5'NTR was more than 25-fold less active than the EMCV IRES in producing translation product. HAV 5'NTR-directed translation was inhibited by the presence of a one-fifth molar quantity of RNA containing the EMCV IRES, while a fivefold molar excess of the HAV 5'NTR did not inhibit EMCV IRES-directed translation. The relatively weak activity of the HAV IRES may thus be due to a reduced affinity for cellular translation factors which are present in limiting quantities in rabbit reticulocyte lysate.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3