The 5' nontranslated region of hepatitis A virus RNA: secondary structure and elements required for translation in vitro

Author:

Brown E A1,Day S P1,Jansen R W1,Lemon S M1

Affiliation:

1. Department of Medicine, University of North Carolina, Chapel Hill 27599-7030.

Abstract

Although the lengthy 5' nontranslated regions (5'NTRs) of other picornaviral RNAs form highly ordered structures with important functions in viral translation, little is known about the 5'NTR of hepatitis A virus (HAV). We determined the nearly complete 5'NTR nucleotide sequences of two genetically divergent HAV strains (PA21 and CF53) and included these data in a comparative phylogenetic analysis of the HAV 5'NTR. We identified covariant nucleotide substitutions predictive of conserved secondary structures and used this information to develop a model of the 5'NTR secondary structure, which was further refined by thermodynamic predictions and nuclease digestion experiments. According to this model, the 5'NTR comprises six major structural domains. Domains I and II (bases 1 to 95) contain a 5'-terminal hairpin and two stem-loops followed by a single-stranded and highly variable pyrimidine-rich tract (bases 96 to 154). The remainder of the 5'NTR (domains III to VI, bases 155 to 734) contains several complex stem-loops, one of which may form a pseudoknot, and terminates in a highly conserved region containing an oligopyrimidine tract preceding the putative start codon by 13 bases. To determine which structural elements might function as an internal ribosome entry site, RNA transcripts representing the HAV 5'NTR with progressive 5' deletions were translated in rabbit reticulocyte lysates. The translation product was truncated, unprocessed P1 polyprotein. Removal of the 5'-terminal 354 bases of the 5'NTR had little effect on translation. However, deletion to base 447 slightly decreased translation, while deletion to base 533 almost completely abolished it. These data indicate that sequences 3' of base 355 play an important role in the translation mechanism utilized by genomic-length HAV RNA. Significantly, this region shares several conserved structural features with the internal ribosome entry site element of murine encephalomyocarditis virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3