Using the IBM analog in-memory hardware acceleration kit for neural network training and inference

Author:

Le Gallo Manuel1ORCID,Lammie Corey1ORCID,Büchel Julian1ORCID,Carta Fabio2ORCID,Fagbohungbe Omobayode2ORCID,Mackin Charles3ORCID,Tsai Hsinyu3ORCID,Narayanan Vijay2ORCID,Sebastian Abu1ORCID,El Maghraoui Kaoutar2ORCID,Rasch Malte J.2ORCID

Affiliation:

1. IBM Research Europe 1 , 8803 Rüschlikon, Switzerland

2. IBM Research - Yorktown Heights 2 , Yorktown Heights, New York 10598, USA

3. IBM Research - Almaden 3 , San Jose, California 95120, USA

Abstract

Analog In-Memory Computing (AIMC) is a promising approach to reduce the latency and energy consumption of Deep Neural Network (DNN) inference and training. However, the noisy and non-linear device characteristics and the non-ideal peripheral circuitry in AIMC chips require adapting DNNs to be deployed on such hardware to achieve equivalent accuracy to digital computing. In this Tutorial, we provide a deep dive into how such adaptations can be achieved and evaluated using the recently released IBM Analog Hardware Acceleration Kit (AIHWKit), freely available at https://github.com/IBM/aihwkit. AIHWKit is a Python library that simulates inference and training of DNNs using AIMC. We present an in-depth description of the AIHWKit design, functionality, and best practices to properly perform inference and training. We also present an overview of the Analog AI Cloud Composer, a platform that provides the benefits of using the AIHWKit simulation in a fully managed cloud setting along with physical AIMC hardware access, freely available at https://aihw-composer.draco.res.ibm.com. Finally, we show examples of how users can expand and customize AIHWKit for their own needs. This Tutorial is accompanied by comprehensive Jupyter Notebook code examples that can be run using AIHWKit, which can be downloaded from https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial.

Funder

HORIZON EUROPE European Innovation Council

Staatssekretariat für Bildung, Forschung und Innovation

Publisher

AIP Publishing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SuperSIM: a comprehensive benchmarking framework for neural networks using superconductor Josephson devices;Superconductor Science and Technology;2024-08-22

2. In-Memory Computing: Global Energy Consumption, Carbon Footprint, Technology, and Products Status Quo;2024 IEEE 24th International Conference on Nanotechnology (NANO);2024-07-08

3. Read Noise Analysis in Analog Conductive-Metal-Oxide/HfOx ReRAM Devices;2024 Device Research Conference (DRC);2024-06-24

4. Improving the Accuracy of Analog-Based In-Memory Computing Accelerators Post-Training;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

5. Memristor-based hardware accelerators for artificial intelligence;Nature Reviews Electrical Engineering;2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3