Oxygen vacancies and local amorphization introduced by high fluence neutron irradiation in β -Ga2O3 power diodes

Author:

Liu Jinyang1ORCID,Han Zhao1ORCID,Ren Lei12ORCID,Yang Xiao1ORCID,Xu Guangwei1ORCID,Hao Weibing1ORCID,Zhao Xiaolong1ORCID,Yang Shu1ORCID,Lu Di1ORCID,Han Yuncheng2ORCID,Hou Xiaohu1ORCID,Long Shibing1ORCID

Affiliation:

1. School of Microelectronics, University of Science and Technology of China 1 , Hefei 230026, China

2. Institute of Nuclear Energy Safety Technology 2 , Hefei 230031, China

Abstract

Beta phase gallium oxide (β-Ga2O3) is emerging as a promising material for space applications due to its unique properties and potential high performance in extreme environments. In this work, we systematically study the impact of β-Ga2O3 Schottky barrier diodes (SBDs) under a high fluence neutron irradiation to explore the degradation mechanism of the devices. After irradiated by neutrons with an average energy of 1–2 MeV and a dose rate of 1.3 × 1012 cm−2 s−1, SBDs with a homoepitaxial layer suffered serious performance degradation. The main manifestation of this degradation was a substantial increase in on-resistance, which rose from 3.9 to 3.5 × 108 mΩ·cm2 under the aforementioned irradiation conditions. The appearance of amorphous/polycrystalline striped lattice damage in the epitaxial layer as well as the presence of deep-level defects caused by oxygen vacancies are factors related to this phenomenon. The simulation revealed that the capture reaction of neutrons and Ga elements is the primary cause of neutron irradiation. This reaction generates high-energy beta- particles (β-particles) resulting in the formation of defects. This paper reveals the degradation mechanism of β-Ga2O3 SBDs under neutron irradiation and provides a possible design roadmap for radiation-resistant β-Ga2O3 power devices. Moreover, a high-temperature oxygen annealing process was implemented, which proved to be in restoring the device performance.

Funder

National Natural Science Foundation of China

Fundamental Research Plan

Key-Area Research and Development Program of Guangdong Province

University of Science and Technology of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3