Optical properties of InGaN-based red multiple quantum wells

Author:

Hou Xin1,Fan Shao-Sheng1,Xu Huan1,Iida Daisuke2ORCID,Liu Yue-Jun3,Mei Yang1,Weng Guo-En3,Chen Shao-Qiang3ORCID,Zhang Bao-Ping1ORCID,Ohkawa Kazuhiro2ORCID

Affiliation:

1. Laboratory of Micro/Nano-Optoelectronics, Department of Microelectronics and Integrated Circuits, Xiamen University, Xiamen 361005, China

2. Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

3. Department of Electronic Engineering, East China Normal University, Shanghai 200241, China

Abstract

In this work, we present the characterization of red InGaN/GaN multiple-quantum-well (MQW) light-emitting diode structures. The optical properties of two MQW structures with different n-GaN underlayer thicknesses (4 and 8  μm) are studied and compared. The results of photoluminescence studies show that a thicker n-GaN layer is beneficial for obtaining higher In content for red MQWs. However, the sample with a thicker n-GaN layer has a poorer internal quantum efficiency, a larger full width at half maximum, and a shorter nonradiative recombination time, implying that there are stronger In-content fluctuations and more defects. Furthermore, red MQWs with higher In content are shown to exhibit more deep localized states. Our findings imply that in order to achieve high-efficiency InGaN MQWs for red emission, enhancing the uniformity of In-content distribution in the active region and decreasing nonradiative recombination centers are critical challenges.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3