Stress effect on the leakage current distribution of ferroelectric Al0.7Sc0.3N across the wafer

Author:

Yang Wanwang1ORCID,Chen Li2ORCID,Li Minghua2ORCID,Liu Fei1ORCID,Liu Xiaoyan1ORCID,Liu Chen2ORCID,Kang Jinfeng1ORCID

Affiliation:

1. School of Integrated Circuits, Peking University 1 , Beijing 100871, China

2. Institute of Microelectronics, Agency for Science, Technology and Research 2 , Singapore 138634, Singapore

Abstract

This study presents an investigation into the stress effect on the leakage current in ferroelectric Al0.7Sc0.3N films by experiments and density functional theory (DFT) computations. The experiments are based on 8-in. 100 nm Al0.7Sc0.3N films obtained from pulsed DC co-sputter deposition technology, which exhibit non-uniform compressive in-plane stress across the wafers and similar distributions of leakage current, suggesting close dependence between each other. DFT computations revealed that stress affects leakage current in two ways: the level of traps introduced by nitrogen vacancy and the formation energy of nitrogen vacancy in Al0.7Sc0.3N. By considering both factors, the leakage current of Al0.7Sc0.3N films increases with larger compressive in-plane stress, as observed in the experimental results. Additionally, the DFT calculation results indicated that the leakage current is more sensitive to compressive stress compared to the tensile, and the minimum leakage current can be obtained with neutral in-plane stress. These findings provide a guideline for stress engineering to optimize the AlScN-based ferroelectric devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Engineering Research Council

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3