Leakage Mechanism and Cycling Behavior of Ferroelectric Al0.7Sc0.3N

Author:

Chen Li1,Wang Qiang2,Liu Chen1,Li Minghua1,Song Wendong1,Wang Weijie1,Loke Desmond K.2,Zhu Yao1

Affiliation:

1. Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore

2. Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore

Abstract

Ferroelectric scandium-doped aluminum nitride (Al1-xScxN) is of considerable research interest because of its superior ferroelectricity. Studies indicate that Al1-xScxN may suffer from a high leakage current, which can hinder further thickness scaling and long-term reliability. In this work, we systematically investigate the origin of the leakage current in Al0.7Sc0.3N films via experiments and theoretical calculations. The results reveal that the leakage may originate from the nitrogen vacancies with positively charged states and fits well with the trap-assisted Poole-Frenkel (P-F) emission. Moreover, we examine the cycling behavior of ferroelectric Al0.7Sc0.3N-based FeRAM devices. We observe that the leakage current substantially increases when the device undergoes bipolar cycling with a pulse amplitude larger than the coercive electric field. Our analysis shows that the increased leakage current in bipolar cycling is caused by the monotonously reduced trap energy level by monitoring the direct current (DC) leakage under different temperatures and the P-F emission fitting.

Funder

Science and Engineering Research Council of A*STAR (Agency for Science, Technology, and Research) Singapore

Publisher

MDPI AG

Reference50 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3