Atomic-size dependence of the cohesive energy, bandgap, Young's modulus, and Raman frequency in different MA2Z4: A bond relaxation investigation

Author:

Liu Yonghui12ORCID,Shao Chen1ORCID,Yu Wei1ORCID,Gui Qingzhong1ORCID,Robertson John13ORCID,Guo Yuzheng1ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

2. College of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China

3. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom

Abstract

Understanding the physical mechanism behind atomic-size dependence of the bandgap, phonon frequency, and mechanical strength in various monolayered MA2Z4 is of crucial importance for their electronic and photoelectronic applications. The density functional theory calculation results confirm that these physical quantities gradually decrease with the increasing periodicity of the atomic size (or radius) of the A or Z of MA2Z4. In order to clarify the common origin of the atomic-size dependence of these quantities, we establish these quantities as functions of bond length and bond energy by developing a bond relaxation theory approach. Theoretical reproduction of periodic trends confirms that bond expansion and energy weakening dominate their atomic-size dependence. The proposed approach is not only helpful to understand the physical origins of atomic-size dependence in different MA2Z4 monolayers but also can be extended to study the periodic trends of the related physical properties in other systems.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3