Abstract
Abstract
Building novel van der Waals (vdW) heterostructures is a feasible method to expand material properties and applications. A MoSi2N4/blue phosphorus (BlueP) heterostructure is designed and investigated as a potential photocatalytic candidate by first-principle calculations. Based on the band alignment and electron transfer, MoSi2N4/BlueP exhibits the characteristics of direct Z-scheme vdW heterostructure, which is favorable for the spatial separation of photogenerated carriers and retains a strong redox capacity. Moreover, the MoSi2N4/BlueP possesses suitable band-edge positions for overall water splitting. Compared with the light absorption of two monolayer materials, the heterostructure has a stronger light absorption from the visible to ultraviolet region. The solar to hydrogen conversion efficiency can reach 21.1% for the heterostructure, which is over three-fold and four-fold as great as that of pristine MoSi2N4 and BlueP monolayers, respectively. All the results show that the MoSi2N4/BlueP heterostructure is a promising photocatalyst for overall water splitting, and it provides new possibilities for designing high-efficiency photocatalysts.
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献