Interface-induced origin of Schottky-to-Ohmic-to-Schottky conversion in non-conventional contact to β-Ga2O3

Author:

Kaur Damanpreet1ORCID,Dahiya Rohit1ORCID,Shivani 1ORCID,Kumar Mukesh1ORCID

Affiliation:

1. Functional and Renewable Energy Materials Laboratory, Department of Physics, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India

Abstract

β-Ga2O3 is an emerging ultra-wide bandgap semiconductor with wide-ranging applications from civil to military realms. Due to the varied surface states and upward band-bending of β-Ga2O3 with most metals, most of the conventional metal contacts turn out to be Schottky in nature, leading to a paucity of suitable Ohmic contacts to Ga2O3. Transparent conducting oxides (TCOs) offer the flexibility of conduction along with optical transparency, useful especially for optoelectronic devices. Herein, we report on the use of indium-zinc oxide (IZO), a TCO, as a suitable, unconventional contact to β-Ga2O3. The devices show a unique conversion from Schottky to Ohmic by annealing at an optimized temperature of 650 °C, while changing back to Schottky at higher temperatures. At 650 °C, the interface chemistry as studied by x-ray photoelectron spectroscopy changes drastically with band-bending of β-Ga2O3 shifting from upward to downward at the interface leading to a type II band alignment, responsible for the Schottky-to-Ohmic conversion. The results provide evidence of using IZO layer as an alternate contact material to β-Ga2O3 whose behavior as Ohmic or Schottky contact may be tuned by simply varying the annealing temperature and inducing interfacial changes at the semiconductor–electrode interface, while maintaining excellent device resilience. The proposed conducting oxide layer provides an effective strategy toward control and tunability in nature of contacts toward gallium oxide and its applications for high temperature resilience solar-blind photodetectors.

Funder

Defence Research and Development Organisation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3