Generalized correlation for predicting the droplet size in a microfluidic flow-focusing device under the effect of surfactant

Author:

Nguyen Minh Duc1ORCID,Tran Khac Vu2ORCID,Dang Cu Trung2ORCID,Kim Gyu Man3,Dang Trung Dung2ORCID,Ta Hong Duc2ORCID,Ngo Ich Long1ORCID

Affiliation:

1. School of Mechanical Engineering, Hanoi University of Science and Technology, No. 01, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

2. School of Chemical Engineering, Hanoi University of Science and Technology, No. 01, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

3. School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea

Abstract

This paper describes an investigation on the dynamic behavior of droplet formation in a microfluidic flow-focusing device (MFFD) under the effect of surfactant using a phase-field method and the Koterweg stress applied in Navier–Stokes equations. The effects of variously important parameters, such as capillary number (Ca0), water fraction ( wf), the viscosity ratio ( α), and particularly surfactant concentration ( cb), were examined. Consequently, the numerical results match the experimental ones. Additionally, the droplet formation is significantly affected by the surfactant, and the droplet size decreases with increasing cb for the whole range of both wf and Ca0. Based on the extensive study, the phase diagrams with two main modes, namely, dropping and threading, are provided. A mountain shape of the dropping mode was found, and this mode can be extended for higher wf with the presence of surfactant. In particular, new generalized correlations as a function of wf, Ca0, and cb are first proposed for predicting quickly and effectively the droplet size. Furthermore, the droplet formation depends significantly on α. With the presence of surfactant, smaller size of the droplet forms and the threading mode occurs at very high α. The results obtained in this study are very useful for understanding the dynamic behavior of droplet formation in MFFDs, which can be used in potential applications such as biomedical and drug delivery systems.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3