Deep reinforcement learning-based digital twin for droplet microfluidics control

Author:

Gyimah Nafisat1ORCID,Scheler Ott2ORCID,Rang Toomas2ORCID,Pardy Tamás2ORCID

Affiliation:

1. Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology 1 , Tallinn, Estonia

2. Department of Chemistry and Biotechnology, Tallinn University of Technology 2 , Tallinn, Estonia

Abstract

This study applied deep reinforcement learning (DRL) with the Proximal Policy Optimization (PPO) algorithm within a two-dimensional computational fluid dynamics (CFD) model to achieve closed-loop control in microfluidics. The objective was to achieve the desired droplet size with minimal variability in a microfluidic capillary flow-focusing device. An artificial neural network was utilized to map sensing signals (flow pressure and droplet size) to control actions (continuous phase inlet pressure). To validate the numerical model, simulation results were compared with experimental data, which demonstrated a good agreement with errors below 11%. The PPO algorithm effectively controlled droplet size across various targets (50, 60, 70, and 80 μm) with different levels of precision. The optimized DRL + CFD framework successfully achieved droplet size control within a coefficient of variation (CV%) below 5% for all targets, outperforming the case without control. Furthermore, the adaptability of the PPO agent to external disturbances was extensively evaluated. By subjecting the system to sinusoidal mechanical vibrations with frequencies ranging from 10 Hz to 10 KHz and amplitudes between 50 and 500 Pa, the PPO algorithm demonstrated efficacy in handling disturbances within limits, highlighting its robustness. Overall, this study showcased the implementation of the DRL+CFD framework for designing and investigating novel control algorithms, advancing the field of droplet microfluidics control research.

Funder

Estonian Research Council

Tallinn University of Technology

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3