The nonlocal electron heat transport under the non-Maxwellian distribution in laser plasmas and its influence on laser ablation

Author:

Li Kai1ORCID,Huo Wen Yi1ORCID

Affiliation:

1. Institute of Applied Physics and Computational Mathematics , Beijing 100094, China

Abstract

The electron heat transport plays an important role in laser driven inertial confinement fusion. For the plasmas created by intense laser, the traditional Spitzer–Härm theory cannot accurately describe the electron heat transport process mainly due to two physical effects. First, the electron distribution function would significantly differ from the Maxwellian distribution because of the inverse bremsstrahlung heating. Second, the long mean free paths of heat carrying electrons relative to the temperature scale length indicate that the electron heat flux has the nonlocal feature. In 2020, we have developed a nonlocal electron heat transport model based on the non-Maxwellian electron distribution function (NM-NL model) to describe the electron heat flux in laser plasmas. Recently, this model is successfully incorporated into our radiation hydrodynamical code RDMG. In this article, we numerically investigated the electron heat flux in laser plasmas, especially the nonlocal feature of heat flux and the influence of the non-Maxwellian distribution. The influence of electron heat transport on laser ablation is also discussed. The simulated plasma conditions based on different electron heat transport models are presented and compared with experiments. Our results show that the nonlocal feature of heat flux and the influence of non-Maxwellian distribution function are considerable in plasmas heated by intense lasers.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3