Design of inertial fusion implosions reaching the burning plasma regime
-
Published:2022-01-26
Issue:3
Volume:18
Page:251-258
-
ISSN:1745-2473
-
Container-title:Nature Physics
-
language:en
-
Short-container-title:Nat. Phys.
Author:
Kritcher A. L.ORCID, Young C. V.ORCID, Robey H. F., Weber C. R., Zylstra A. B., Hurricane O. A.ORCID, Callahan D. A., Ralph J. E., Ross J. S., Baker K. L., Casey D. T.ORCID, Clark D. S., Döppner T.ORCID, Divol L., Hohenberger M.ORCID, Hopkins L. Berzak, Le Pape S., Meezan N. B.ORCID, Pak A., Patel P. K., Tommasini R.ORCID, Ali S. J., Amendt P. A., Atherton L. J., Bachmann B.ORCID, Bailey D., Benedetti L. R., Betti R., Bhandarkar S. D., Biener J., Bionta R. M., Birge N. W., Bond E. J., Bradley D. K., Braun T.ORCID, Briggs T. M., Bruhn M. W., Celliers P. M., Chang B., Chapman T., Chen H.ORCID, Choate C., Christopherson A. R., Crippen J. W., Dewald E. L., Dittrich T. R., Edwards M. J., Farmer W. A.ORCID, Field J. E., Fittinghoff D.ORCID, Frenje J. A., Gaffney J. A.ORCID, Johnson M. GatuORCID, Glenzer S. H.ORCID, Grim G. P.ORCID, Haan S., Hahn K. D.ORCID, Hall G. N., Hammel B. A., Harte J., Hartouni E., Heebner J. E., Hernandez V. J., Herrmann H., Herrmann M. C., Hinkel D. E., Ho D. D., Holder J. P.ORCID, Hsing W. W., Huang H., Humbird K. D., Izumi N.ORCID, Jarrott L. C., Jeet J., Jones O., Kerbel G. D., Kerr S. M.ORCID, Khan S. F., Kilkenny J., Kim Y., Geppert-Kleinrath H., Geppert-Kleinrath V.ORCID, Kong C., Koning J. M.ORCID, Kruse M. K. G., Kroll J. J., Kustowski B.ORCID, Landen O. L.ORCID, Langer S., Larson D., Lemos N. C., Lindl J. D., Ma T.ORCID, MacDonald M. J., MacGowan B. J.ORCID, Mackinnon A. J., MacLaren S. A., MacPhee A. G., Marinak M. M., Mariscal D. A., Marley E. V., Masse L., Meaney K., Michel P. A., Millot M.ORCID, Milovich J. L.ORCID, Moody J. D., Moore A. S., Morton J. W., Murphy T.ORCID, Newman K., Di Nicola J.-M. G., Nikroo A., Nora R., Patel M. V., Pelz L. J., Peterson J. L., Ping Y.ORCID, Pollock B. B., Ratledge M., Rice N. G., Rinderknecht H.ORCID, Rosen M., Rubery M. S., Salmonson J. D., Sater J., Schiaffino S., Schlossberg D. J.ORCID, Schneider M. B., Schroeder C. R., Scott H. A., Sepke S. M., Sequoia K., Sherlock M. W., Shin S., Smalyuk V. A., Spears B. K.ORCID, Springer P. T., Stadermann M., Stoupin S., Strozzi D. J.ORCID, Suter L. J., Thomas C. A., Town R. P. J., Trosseille C., Tubman E. R.ORCID, Volegov P. L.ORCID, Widmann K.ORCID, Wild C., Wilde C. H., Van Wonterghem B. M., Woods D. T., Woodworth B. N., Yamaguchi M., Yang S. T., Zimmerman G. B.
Abstract
AbstractIn a burning plasma state1–7, alpha particles from deuterium–tritium fusion reactions redeposit their energy and are the dominant source of heating. This state has recently been achieved at the US National Ignition Facility8 using indirect-drive inertial-confinement fusion. Our experiments use a laser-generated radiation-filled cavity (a hohlraum) to spherically implode capsules containing deuterium and tritium fuel in a central hot spot where the fusion reactions occur. We have developed more efficient hohlraums to implode larger fusion targets compared with previous experiments9,10. This delivered more energy to the hot spot, whereas other parameters were optimized to maintain the high pressures required for inertial-confinement fusion. We also report improvements in implosion symmetry control by moving energy between the laser beams11–16 and designing advanced hohlraum geometry17 that allows for these larger implosions to be driven at the present laser energy and power capability of the National Ignition Facility. These design changes resulted in fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy18,19. Radiation hydrodynamics simulations20,21 show energy deposition by alpha particles as the dominant term in the hot-spot energy balance, indicative of a burning plasma state.
Funder
DOE | National Nuclear Security Administration
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference47 articles.
1. Hurricane, O. A. et al. Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility. Plasma Phys. Control. Fusion 61, 014033 (2019). 2. Betti, R. et al. Alpha heating and burning plasmas in inertial confinement fusion. Phys. Rev. Lett. 114, 255003 (2015). 3. Hurricane, O. A. et al. Approaching a burning plasma on the NIF. Phys. Plasmas 26, 052704 (2019). 4. National Academies of Sciences, Engineering, and Medicine Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research (National Academies Press, 2019). 5. Lindl, J. D., Haan, S. W., Landen, O. L., Christopherson, A. R. & Betti, R. Progress toward a self-consistent set of 1D ignition capsule metrics in ICF. Phys. Plasmas 25, 122704 (2018).
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|