Burning plasma achieved in inertial fusion
Author:
Zylstra A. B.ORCID, Hurricane O. A.ORCID, Callahan D. A., Kritcher A. L.ORCID, Ralph J. E., Robey H. F., Ross J. S., Young C. V.ORCID, Baker K. L., Casey D. T.ORCID, Döppner T.ORCID, Divol L., Hohenberger M.ORCID, Le Pape S., Pak A., Patel P. K., Tommasini R.ORCID, Ali S. J.ORCID, Amendt P. A., Atherton L. J., Bachmann B.ORCID, Bailey D., Benedetti L. R., Berzak Hopkins L., Betti R., Bhandarkar S. D., Biener J.ORCID, Bionta R. M., Birge N. W., Bond E. J., Bradley D. K., Braun T.ORCID, Briggs T. M., Bruhn M. W., Celliers P. M., Chang B., Chapman T., Chen H.ORCID, Choate C., Christopherson A. R., Clark D. S., Crippen J. W., Dewald E. L., Dittrich T. R., Edwards M. J., Farmer W. A.ORCID, Field J. E., Fittinghoff D.ORCID, Frenje J., Gaffney J.ORCID, Gatu Johnson M.ORCID, Glenzer S. H.ORCID, Grim G. P.ORCID, Haan S., Hahn K. D., Hall G. N., Hammel B. A., Harte J., Hartouni E., Heebner J. E., Hernandez V. J., Herrmann H.ORCID, Herrmann M. C., Hinkel D. E., Ho D. D., Holder J. P.ORCID, Hsing W. W., Huang H., Humbird K. D., Izumi N.ORCID, Jarrott L. C., Jeet J.ORCID, Jones O., Kerbel G. D., Kerr S. M.ORCID, Khan S. F., Kilkenny J., Kim Y., Geppert Kleinrath H., Geppert Kleinrath V.ORCID, Kong C., Koning J. M.ORCID, Kroll J. J., Kruse M. K. G., Kustowski B.ORCID, Landen O. L.ORCID, Langer S., Larson D., Lemos N. C., Lindl J. D., Ma T.ORCID, MacDonald M. J.ORCID, MacGowan B. J.ORCID, Mackinnon A. J., MacLaren S. A., MacPhee A. G., Marinak M. M., Mariscal D. A., Marley E. V., Masse L., Meaney K., Meezan N. B.ORCID, Michel P. A., Millot M.ORCID, Milovich J. L.ORCID, Moody J. D., Moore A. S., Morton J. W., Murphy T.ORCID, Newman K., Di Nicola J.-M. G., Nikroo A., Nora R., Patel M. V., Pelz L. J., Peterson J. L.ORCID, Ping Y.ORCID, Pollock B. B., Ratledge M., Rice N. G., Rinderknecht H.ORCID, Rosen M., Rubery M. S., Salmonson J. D., Sater J., Schiaffino S., Schlossberg D. J.ORCID, Schneider M. B., Schroeder C. R., Scott H. A., Sepke S. M., Sequoia K., Sherlock M. W., Shin S., Smalyuk V. A., Spears B. K.ORCID, Springer P. T., Stadermann M., Stoupin S., Strozzi D. J.ORCID, Suter L. J., Thomas C. A., Town R. P. J., Tubman E. R., Trosseille C., Volegov P. L.ORCID, Weber C. R., Widmann K.ORCID, Wild C., Wilde C. H., Van Wonterghem B. M., Woods D. T., Woodworth B. N., Yamaguchi M., Yang S. T., Zimmerman G. B.
Abstract
AbstractObtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4–7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference49 articles.
1. National Academies of Sciences, Engineering, and Medicine. Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research (National Academies Press, 2019). 2. Hurricane, O. A. et al. Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility. Plasma Phys. Control. Fusion 61, 014033 (2019). 3. Hurricane, O. A. et al. Approaching a burning plasma on the NIF. Phys. Plasmas 26, 052704 (2019). 4. Zylstra, A. B. et al. Record energetics for an inertial fusion implosion at NIF. Phys. Rev. Lett. 126, 025001 (2021). 5. Robey, H. F., Berzak Hopkins, L., Milovich, J. L. & Meezan, N. B. The I-Raum: a new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility. Phys. Plasmas 25, 012711 (2018).
Cited by
322 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|