Space-time dependent non-local thermal transport effects on laser ablation dynamics in inertial confinement fusion

Author:

Yuan W QORCID,Zhao Z H,Zhu S P,He X T,Qiao BORCID

Abstract

Abstract In inertial confinement fusion (ICF), electron thermal transport plays a key role in laser ablation and the subsequent implosion processes, which always exhibits intractable non-local effects. Simple modifications of the local Spitzer–Härm model with either an artificially-assumed constant flux limiter or a purely time-dependent one are applied to explain some experimental data, but fail to simultaneously reproduce the space-time evolution of the whole laser ablation process. Here, by carrying out a series of one-dimensional and two-dimensional radiation hydrodynamic simulations where the space-time-dependent non-local thermal transport model proposed by Schurt, Nicolaï and Busquet (the SNB model) are self-consistently included, we systematically study the non-local effects on the whole laser ablation dynamics including those occurring at the critical surface, the conduction zone and the ablation front. Different from those obtained previously, our results show that due to the non-local heat flow redistribution and redirection, at the critical surface the thermal flux is more inhibited, in the conduction zone the lateral thermal transport is suppressed, and ahead of the ablation front the plasma is preheated. When combined together they eventually result in significant improvement of the laser absorption efficiency, extension of the conduction zone, increase of both the mass ablation rate and shock velocity. Furthermore, the dependence of these laser ablation dynamics on different drive laser intensities is investigated, which provides beneficial enlightenments on potential laser pulse shaping and/or ignition scheme optimization in ICF.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of CAS

National Natural Science Foundation of China, Grants

National Supercomputer Center in Guangzhou

National Natural Science Funds for Distinguished Young Scholar

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of the ELM-free negative triangularity edge on DIII-D;Plasma Physics and Controlled Fusion;2024-09-05

2. The effect of high-Z dopant on the ablation of carbon–hydrogen polymer target;Plasma Physics and Controlled Fusion;2024-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3